Download
12911_2024_Article_2428.pdf 1,78MB
WeightNameValue
1000 Titel
  • Susceptibility of AutoML mortality prediction algorithms to model drift caused by the COVID pandemic
1000 Autor/in
  1. Kagerbauer, Simone Maria |
  2. Ulm, Bernhard |
  3. Podtschaske, Armin Horst |
  4. Andonov, Dimislav Ivanov |
  5. Blobner, Manfred |
  6. Jungwirth, Bettina |
  7. Graessner, Martin |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-02
1000 Erschienen in
1000 Quellenangabe
  • 24(1):34
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12911-024-02428-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877890/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Concept drift and covariate shift lead to a degradation of machine learning (ML) models. The objective of our study was to characterize sudden data drift as caused by the COVID pandemic. Furthermore, we investigated the suitability of certain methods in model training to prevent model degradation caused by data drift.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We trained different ML models with the H2O AutoML method on a dataset comprising 102,666 cases of surgical patients collected in the years 2014–2019 to predict postoperative mortality using preoperatively available data. Models applied were Generalized Linear Model with regularization, Default Random Forest, Gradient Boosting Machine, eXtreme Gradient Boosting, Deep Learning and Stacked Ensembles comprising all base models. Further, we modified the original models by applying three different methods when training on the original pre-pandemic dataset: (1) we weighted older data weaker, (2) used only the most recent data for model training and (3) performed a z-transformation of the numerical input parameters. Afterwards, we tested model performance on a pre-pandemic and an in-pandemic data set not used in the training process, and analysed common features.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The models produced showed excellent areas under receiver-operating characteristic and acceptable precision-recall curves when tested on a dataset from January-March 2020, but significant degradation when tested on a dataset collected in the first wave of the COVID pandemic from April-May 2020. When comparing the probability distributions of the input parameters, significant differences between pre-pandemic and in-pandemic data were found. The endpoint of our models, in-hospital mortality after surgery, did not differ significantly between pre- and in-pandemic data and was about 1% in each case. However, the models varied considerably in the composition of their input parameters. None of our applied modifications prevented a loss of performance, although very different models emerged from it, using a large variety of parameters.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Our results show that none of our tested easy-to-implement measures in model training can prevent deterioration in the case of sudden external events. Therefore, we conclude that, in the presence of concept drift and covariate shift, close monitoring and critical review of model predictions are necessary.</jats:p> </jats:sec>
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Covariate shift
lokal Algorithms [MeSH]
lokal Humans [MeSH]
lokal Data shift
lokal AutoML
lokal COVID-19
lokal Hospital Mortality [MeSH]
lokal Pandemics [MeSH]
lokal Research
lokal Concept drift
lokal Machine Learning [MeSH]
lokal Model deterioration
lokal COVID-19/epidemiology [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S2FnZXJiYXVlciwgU2ltb25lIE1hcmlh|https://frl.publisso.de/adhoc/uri/VWxtLCBCZXJuaGFyZA==|https://frl.publisso.de/adhoc/uri/UG9kdHNjaGFza2UsIEFybWluIEhvcnN0|https://frl.publisso.de/adhoc/uri/QW5kb25vdiwgRGltaXNsYXYgSXZhbm92|https://frl.publisso.de/adhoc/uri/QmxvYm5lciwgTWFuZnJlZA==|https://frl.publisso.de/adhoc/uri/SnVuZ3dpcnRoLCBCZXR0aW5h|https://frl.publisso.de/adhoc/uri/R3JhZXNzbmVyLCBNYXJ0aW4=
1000 Hinweis
  • DeepGreen-ID: 96d442fae7234b96a8a0e6f11582f889 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. German Federal Ministry for Economic Affairs and Energy |
  2. Universität Ulm |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer German Federal Ministry for Economic Affairs and Energy |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universität Ulm |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6506961.rdf
1000 Erstellt am 2025-02-06T12:52:43.452+0100
1000 Erstellt von 322
1000 beschreibt frl:6506961
1000 Zuletzt bearbeitet 2025-09-12T14:50:18.054+0200
1000 Objekt bearb. Fri Sep 12 14:50:18 CEST 2025
1000 Vgl. frl:6506961
1000 Oai Id
  1. oai:frl.publisso.de:frl:6506961 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source