Download
00395_2024_Article_1083.pdf 1,58MB
WeightNameValue
1000 Titel
  • The IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT): multicenter pig study on the effect of ischemic preconditioning
1000 Autor/in
  1. Kleinbongard, Petra |
  2. Galán-Arriola, Carlos |
  3. Badimon, Lina |
  4. Crisostomo, Verónica |
  5. Giricz, Zoltán |
  6. Gyöngyösi, Mariann |
  7. Heusch, Gerd |
  8. Ibanez, Borja |
  9. Kiss, Attila |
  10. de Kleijn, Dominique |
  11. Podesser, Bruno |
  12. Ramirez Carracedo, Rafael |
  13. Rodriguez-Sinovas, Antonio |
  14. Ruiz Meana, Marisol |
  15. Sanchez Margallo, Francisco Miguel |
  16. Vilahur, Gemma |
  17. Zamorano, José Luis |
  18. Zaragoza, Carlos |
  19. Ferdinandy, Peter |
  20. Hausenloy, Derek |
1000 Verlag
  • Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-18
1000 Erschienen in
1000 Quellenangabe
  • 119(6):893-909
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00395-024-01083-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628588/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Numerous cardioprotective interventions have been reported to reduce myocardial infarct size (IS) in pre-clinical studies. However, their translation for the benefit of patients with acute myocardial infarction (AMI) has been largely disappointing. One reason for the lack of translation is the lack of rigor and reproducibility in pre-clinical studies. To address this, we have established the European IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) pig AMI network with centralized randomization and blinded core laboratory IS analysis and validated the network with ischemic preconditioning (IPC) as a positive control. Ten sites in the COST Innovators Grant (IG16225) network participated in the IMPACT network. Three sites were excluded from the final analysis through quality control of infarct images and use of pre-defined exclusion criteria. Using a centrally generated randomization list, pigs were allocated to myocardial ischemia/reperfusion (I/R, <jats:italic>N</jats:italic> = 5/site) or IPC + I/R (<jats:italic>N</jats:italic> = 5/site). The primary endpoint was IS [% area-at-risk (AAR)], as quantified by triphenyl-tetrazolium-chloride (TTC) staining in a centralized, blinded core laboratory (5 sites), or IS [% left-ventricular mass (LV)], as quantified by a centralized, blinded cardiac magnetic resonance (CMR) core laboratory (2 sites). In pooled analyses, IPC significantly reduced IS when compared to I/R (57 ± 14 versus 32 ± 19 [%AAR] <jats:italic>N</jats:italic> = 25 pigs/group; <jats:italic>p</jats:italic> &lt; 0.001; 25 ± 13 versus 14 ± 8 [%LV]; <jats:italic>N</jats:italic> = 10 pigs/group; <jats:italic>p</jats:italic> = 0.021). In site-specific analyses, in 4 of the 5 sites, IS was significantly reduced by IPC when compared to I/R when quantified by TTC and in 1 of 2 sites when quantified by CMR. A pig AMI multicenter European network with centralized randomization and core blinded IS analysis was established and validated with the aim to improve the reproducibility of cardioprotective interventions in pre-clinical studies and the translation of cardioprotection for patient benefit.</jats:p>
1000 Sacherschließung
lokal Myocardial Infarction/therapy [MeSH]
lokal Female [MeSH]
lokal Myocardial Reperfusion Injury/pathology [MeSH]
lokal Swine [MeSH]
lokal Pig
lokal Myocardial Infarction/prevention
lokal Ischemic Preconditioning, Myocardial/methods [MeSH]
lokal Original Contribution
lokal Randomized-controlled trial
lokal Myocardial Infarction/pathology [MeSH]
lokal Animals [MeSH]
lokal Acute myocardial infarction
lokal Ischemic preconditioning
lokal Myocardial Reperfusion Injury/prevention
lokal Male [MeSH]
lokal Reproducibility of Results [MeSH]
lokal Multicenter network
lokal Disease Models, Animal [MeSH]
lokal Ischemia/reperfusion injury
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-3576-3772|https://orcid.org/0000-0001-7403-8974|https://orcid.org/0000-0002-9162-2459|https://orcid.org/0000-0003-1740-7029|https://orcid.org/0000-0003-2036-8665|https://orcid.org/0000-0002-7083-2107|https://orcid.org/0000-0001-7078-4160|https://orcid.org/0000-0002-5036-254X|https://orcid.org/0000-0003-4652-1998|https://orcid.org/0000-0003-2714-2140|https://orcid.org/0000-0002-4641-7202|https://orcid.org/0000-0002-8391-2245|https://orcid.org/0000-0003-2930-8773|https://orcid.org/0000-0002-4067-4638|https://orcid.org/0000-0003-2138-988X|https://orcid.org/0000-0002-2828-8873|https://orcid.org/0000-0002-0487-1749|https://orcid.org/0000-0002-1706-8592|https://orcid.org/0000-0002-6424-6806|https://orcid.org/0000-0003-0729-4956
1000 Hinweis
  • DeepGreen-ID: 65b97ba7d282410fb61f6fbe61ad649c ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Severo Ochoa Center of Excellence |
  2. Duke-NUS Signature Research Programme |
  3. Ministry for Innovation and Technology in Hungary |
  4. Hungarian National Scientific Research Fund |
  5. Instituto de Salud Carlos III |
  6. Centro Nacional de Investigaciones Cardiovasculares |
  7. Ministerio de Ciencia e Innovación |
  8. Pro CNIC Foundation |
  9. Deutsche Forschungsgemeinschaft |
  10. European Union COST Action METAHEART |
  11. Ludwig Boltzmann Gesellschaft |
  12. Universitätsklinikum Essen |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
  5. -
  6. -
  7. -
  8. -
  9. -
  10. -
  11. -
  12. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. -
  6. -
  7. -
  8. -
  9. -
  10. -
  11. -
  12. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Severo Ochoa Center of Excellence |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Duke-NUS Signature Research Programme |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Ministry for Innovation and Technology in Hungary |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Hungarian National Scientific Research Fund |
    1000 Förderprogramm -
    1000 Fördernummer -
  5. 1000 joinedFunding-child
    1000 Förderer Instituto de Salud Carlos III |
    1000 Förderprogramm -
    1000 Fördernummer -
  6. 1000 joinedFunding-child
    1000 Förderer Centro Nacional de Investigaciones Cardiovasculares |
    1000 Förderprogramm -
    1000 Fördernummer -
  7. 1000 joinedFunding-child
    1000 Förderer Ministerio de Ciencia e Innovación |
    1000 Förderprogramm -
    1000 Fördernummer -
  8. 1000 joinedFunding-child
    1000 Förderer Pro CNIC Foundation |
    1000 Förderprogramm -
    1000 Fördernummer -
  9. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  10. 1000 joinedFunding-child
    1000 Förderer European Union COST Action METAHEART |
    1000 Förderprogramm -
    1000 Fördernummer -
  11. 1000 joinedFunding-child
    1000 Förderer Ludwig Boltzmann Gesellschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  12. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Essen |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6507104.rdf
1000 Erstellt am 2025-02-06T13:20:06.743+0100
1000 Erstellt von 322
1000 beschreibt frl:6507104
1000 Zuletzt bearbeitet 2025-07-30T15:20:46.973+0200
1000 Objekt bearb. Wed Jul 30 15:20:46 CEST 2025
1000 Vgl. frl:6507104
1000 Oai Id
  1. oai:frl.publisso.de:frl:6507104 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source