Download
40808_2024_Article_2188.pdf 1,95MB
WeightNameValue
1000 Titel
  • Optimizing machine learning models for wheat yield estimation using a comprehensive UAV dataset
1000 Autor/in
  1. Khodjaev, Shovkat |
  2. Bobojonov, Ihtiyor |
  3. Kuhn, Lena |
  4. Glauben, Thomas |
1000 Verlag
  • Springer International Publishing
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-12-19
1000 Erschienen in
1000 Quellenangabe
  • 11(1):15
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s40808-024-02188-9 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title> <jats:p>Timely and accurate wheat yield forecasts using Unmanned Aircraft Vehicles (UAV) are crucial for crop management decisions, food security, and ensuring the sustainability of agriculture worldwide. While traditional machine learning algorithms have already been used in crop yield modelling, previous research used machine learning algorithms with default parameters and did not take into account the complex, non-linear relationships between model variables. Especially, the combination of vegetation indices, soil properties, solar radiation, and wheat height at the field estimation has not been deeply analysed in scientific literature. We present a machine learning based wheat yield estimation model using comprehensive UAV datasets with the implementation of hyperparameter tuning to improve model performance. The performance of the models before and after optimisations was measured using the metrics RMSE, MAE and R2, and the results showed that the models improved after tuning. Furthermore, we find that the Random Forest (RF) and Extreme Gradient Boosting (XGBoost) models outperformed other examined models. Furthermore, a non-parametric Friedman test with a Nemenyi post-hoc test indicates that the best-performing algorithms for wheat yield estimation and prediction are RF and XGBoost models. In the final step, we utilised a SHapley Additive exPlanations approach to identify the direct impact of each input variable on the yield estimation model. Among the input variables, only the Red-Edge Chlorophyll Index, the Normalised Difference Red-Edge Index and wheat height were found to be of high explanatory power in predicting wheat yield. The optimised model is 7–12% more accurate in estimating wheat yields than traditional linear models.</jats:p>
1000 Sacherschließung
lokal Original Article
lokal Drone sensors
lokal Feature importance
lokal Comprehensive datasets
lokal Machine learning models
lokal Wheat yield
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8643-9502|https://orcid.org/0000-0003-2166-6234|https://orcid.org/0000-0002-1453-0040|https://orcid.org/0000-0003-0640-9387
1000 Hinweis
  • DeepGreen-ID: 5e4df5ce3f864fa6953ca00e071b5988 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Leibniz-Gemeinschaft |
  3. Leibniz-Institut für Agrarentwicklung in Transformationsökonomien (IAMO) |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Leibniz-Gemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Leibniz-Institut für Agrarentwicklung in Transformationsökonomien (IAMO) |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6508004.rdf
1000 Erstellt am 2025-02-06T16:04:11.707+0100
1000 Erstellt von 322
1000 beschreibt frl:6508004
1000 Zuletzt bearbeitet 2025-07-30T13:18:17.437+0200
1000 Objekt bearb. Wed Jul 30 13:18:17 CEST 2025
1000 Vgl. frl:6508004
1000 Oai Id
  1. oai:frl.publisso.de:frl:6508004 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source