Download
12874_2024_Article_2232.pdf 1,62MB
WeightNameValue
1000 Titel
  • A novel non-negative Bayesian stacking modeling method for Cancer survival prediction using high-dimensional omics data
1000 Autor/in
  1. Shen, Junjie |
  2. Wang, Shuo |
  3. Sun, Hao |
  4. Huang, Jie |
  5. Bai, Lu |
  6. Wang, Xichao |
  7. Dong, Yongfei |
  8. Tang, Zaixiang |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-03
1000 Erschienen in
1000 Quellenangabe
  • 24(1):105
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-024-02232-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067084/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Survival prediction using high-dimensional molecular data is a hot topic in the field of genomics and precision medicine, especially for cancer studies. Considering that carcinogenesis has a pathway-based pathogenesis, developing models using such group structures is a closer mimic of disease progression and prognosis. Many approaches can be used to integrate group information; however, most of them are single-model methods, which may account for unstable prediction.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We introduced a novel survival stacking method that modeled using group structure information to improve the robustness of cancer survival prediction in the context of high-dimensional omics data. With a super learner, survival stacking combines the prediction from multiple sub-models that are independently trained using the features in pre-grouped biological pathways. In addition to a non-negative linear combination of sub-models, we extended the super learner to non-negative Bayesian hierarchical generalized linear model and artificial neural network. We compared the proposed modeling strategy with the widely used survival penalized method Lasso Cox and several group penalized methods, e.g., group Lasso Cox, via simulation study and real-world data application.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The proposed survival stacking method showed superior and robust performance in terms of discrimination compared with single-model methods in case of high-noise simulated data and real-world data. The non-negative Bayesian stacking method can identify important biological signal pathways and genes that are associated with the prognosis of cancer.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>This study proposed a novel survival stacking strategy incorporating biological group information into the cancer prognosis models. Additionally, this study extended the super learner to non-negative Bayesian model and ANN, enriching the combination of sub-models. The proposed Bayesian stacking strategy exhibited favorable properties in the prediction and interpretation of complex survival data, which may aid in discovering cancer targets.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Algorithms [MeSH]
lokal Humans [MeSH]
lokal Neoplasms/mortality [MeSH]
lokal Non-negative Bayesian model
lokal Survival Analysis [MeSH]
lokal Genomics/methods [MeSH]
lokal Survival stacking
lokal Bayes Theorem [MeSH]
lokal Neoplasms/genetics [MeSH]
lokal Neural Networks, Computer [MeSH]
lokal Proportional Hazards Models [MeSH]
lokal Research
lokal Prognosis [MeSH]
lokal Artificial neural network
lokal Computational Biology/methods [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U2hlbiwgSnVuamll|https://frl.publisso.de/adhoc/uri/V2FuZywgU2h1bw==|https://frl.publisso.de/adhoc/uri/U3VuLCBIYW8=|https://frl.publisso.de/adhoc/uri/SHVhbmcsIEppZQ==|https://frl.publisso.de/adhoc/uri/QmFpLCBMdQ==|https://frl.publisso.de/adhoc/uri/V2FuZywgWGljaGFv|https://frl.publisso.de/adhoc/uri/RG9uZywgWW9uZ2ZlaQ==|https://frl.publisso.de/adhoc/uri/VGFuZywgWmFpeGlhbmc=
1000 Hinweis
  • DeepGreen-ID: 002308fa73df49dea30a68ee65d0a8a4 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6508122.rdf
1000 Erstellt am 2025-02-06T16:26:28.737+0100
1000 Erstellt von 322
1000 beschreibt frl:6508122
1000 Zuletzt bearbeitet 2025-08-05T07:08:55.850+0200
1000 Objekt bearb. Tue Aug 05 07:08:55 CEST 2025
1000 Vgl. frl:6508122
1000 Oai Id
  1. oai:frl.publisso.de:frl:6508122 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source