Download
11548_2024_Article_3063.pdf 1,81MB
WeightNameValue
1000 Titel
  • Surgical phase and instrument recognition: how to identify appropriate dataset splits
1000 Autor/in
  1. Kostiuchik, Georgii |
  2. Sharan, Lalith |
  3. Mayer, Benedikt |
  4. Wolf, Ivo |
  5. Preim, Bernhard |
  6. Engelhardt, Sandy |
1000 Verlag
  • Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-01-29
1000 Erschienen in
1000 Quellenangabe
  • 19(4):699-711
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03063-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973055/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Machine learning approaches can only be reliably evaluated if training, validation, and test data splits are representative and not affected by the absence of classes. Surgical workflow and instrument recognition are two tasks that are complicated in this manner, because of heavy data imbalances resulting from different length of phases and their potential erratic occurrences. Furthermore, sub-properties like instrument (co-)occurrence are usually not particularly considered when defining the split.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We present a publicly available data visualization tool that enables interactive exploration of dataset partitions for surgical phase and instrument recognition. The application focuses on the visualization of the occurrence of phases, phase transitions, instruments, and instrument combinations across sets. Particularly, it facilitates assessment of dataset splits, especially regarding identification of sub-optimal dataset splits.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>We performed analysis of the datasets Cholec80, CATARACTS, CaDIS, M2CAI-workflow, and M2CAI-tool using the proposed application. We were able to uncover phase transitions, individual instruments, and combinations of surgical instruments that were not represented in one of the sets. Addressing these issues, we identify possible improvements in the splits using our tool. A user study with ten participants demonstrated that the participants were able to successfully solve a selection of data exploration tasks.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>In highly unbalanced class distributions, special care should be taken with respect to the selection of an appropriate dataset split because it can greatly influence the assessments of machine learning approaches. Our interactive tool allows for determination of better splits to improve current practices in the field. The live application is available at <jats:ext-link xmlns:xlink='http://www.w3.org/1999/xlink' ext-link-type='uri' xlink:href='https://cardio-ai.github.io/endovis-ml/'>https://cardio-ai.github.io/endovis-ml/</jats:ext-link>.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Original Article
lokal Surgical Instruments [MeSH]
lokal Surgical data science
lokal Surgical workflow recognition
lokal Workflow [MeSH]
lokal Humans [MeSH]
lokal Machine Learning [MeSH]
lokal Instrument detection
lokal Data visualization
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0009-0001-5907-9839|https://orcid.org/0000-0003-0835-042X|https://orcid.org/0000-0002-3450-9556|https://orcid.org/0000-0002-6519-6484|https://orcid.org/0000-0001-9826-9478|https://orcid.org/0000-0001-8816-7654
1000 Hinweis
  • DeepGreen-ID: d9685adf650d41c2b3af7221550f09bb ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Klaus Tschira Stiftung |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Klaus Tschira Stiftung |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6508703.rdf
1000 Erstellt am 2025-02-06T18:09:23.415+0100
1000 Erstellt von 322
1000 beschreibt frl:6508703
1000 Zuletzt bearbeitet 2025-07-30T14:57:22.966+0200
1000 Objekt bearb. Wed Jul 30 14:57:22 CEST 2025
1000 Vgl. frl:6508703
1000 Oai Id
  1. oai:frl.publisso.de:frl:6508703 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source