Download
40168_2024_Article_1909.pdf 4,43MB
WeightNameValue
1000 Titel
  • Growth of sulfate-reducing Desulfobacterota and Bacillota at periodic oxygen stress of 50% air-O2 saturation
1000 Autor/in
  1. Dyksma, Stefan |
  2. Pester, Michael |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-04
1000 Erschienen in
1000 Quellenangabe
  • 12(1):191
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40168-024-01909-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451228/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Sulfate-reducing bacteria (SRB) are frequently encountered in anoxic-to-oxic transition zones, where they are transiently exposed to microoxic or even oxic conditions on a regular basis. This can be marine tidal sediments, microbial mats, and freshwater wetlands like peatlands. In the latter, a cryptic but highly active sulfur cycle supports their anaerobic activity. Here, we aimed for a better understanding of how SRB responds to periodically fluctuating redox regimes.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>To mimic these fluctuating redox conditions, a bioreactor was inoculated with peat soil supporting cryptic sulfur cycling and consecutively exposed to oxic (one week) and anoxic (four weeks) phases over a period of &gt; 200 days. SRB affiliated to the genus <jats:italic>Desulfosporosinus</jats:italic> (<jats:italic>Bacillota</jats:italic>) and the families <jats:italic>Syntrophobacteraceae</jats:italic>, <jats:italic>Desulfomonilaceae</jats:italic>, <jats:italic>Desulfocapsaceae</jats:italic>, and <jats:italic>Desulfovibrionaceae</jats:italic> (<jats:italic>Desulfobacterota</jats:italic>) successively established growing populations (up to 2.9% relative abundance) despite weekly periods of oxygen exposures at 133 µM (50% air saturation). Adaptation mechanisms were analyzed by genome-centric metatranscriptomics. Despite a global drop in gene expression during oxic phases, the perpetuation of gene expression for energy metabolism was observed for all SRBs. The transcriptional response pattern for oxygen resistance was differentiated across individual SRBs, indicating different adaptation strategies. Most SRB transcribed differing sets of genes for oxygen consumption, reactive oxygen species detoxification, and repair of oxidized proteins as a response to the periodical redox switch from anoxic to oxic conditions. Noteworthy, a <jats:italic>Desulfosporosinus</jats:italic>, a <jats:italic>Desulfovibrionaceaea</jats:italic>, and a <jats:italic>Desulfocapsaceaea</jats:italic> representative maintained high transcript levels of genes encoding oxygen defense proteins even under anoxic conditions, while representing dominant SRB populations after half a year of bioreactor operation.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>In situ-relevant peatland SRB established large populations despite periodic one-week oxygen levels that are one order of magnitude higher than known to be tolerated by pure cultures of SRB. The observed decrease in gene expression regulation may be key to withstand periodically occurring changes in redox regimes in these otherwise strictly anaerobic microorganisms. Our study provides important insights into the stress response of SRB that drives sulfur cycling at oxic-anoxic interphases.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Sulfate-reducing bacteria
lokal Bioreactor
lokal Sulfates/metabolism [MeSH]
lokal Bioreactors/microbiology [MeSH]
lokal Anaerobiosis [MeSH]
lokal Oxygen defense
lokal Oxygen/metabolism [MeSH]
lokal Sulfur cycle
lokal Oxidation-Reduction [MeSH]
lokal Deltaproteobacteria/metabolism [MeSH]
lokal Reactive oxygen species
lokal Oxic-anoxic transition zone
lokal Deltaproteobacteria/genetics [MeSH]
lokal Research
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RHlrc21hLCBTdGVmYW4=|https://frl.publisso.de/adhoc/uri/UGVzdGVyLCBNaWNoYWVs
1000 Hinweis
  • DeepGreen-ID: 234910872fca40e4b1c1fa3052f299b0 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6509740.rdf
1000 Erstellt am 2025-02-06T21:15:26.986+0100
1000 Erstellt von 322
1000 beschreibt frl:6509740
1000 Zuletzt bearbeitet 2025-08-15T20:12:32.920+0200
1000 Objekt bearb. Fri Aug 15 20:12:32 CEST 2025
1000 Vgl. frl:6509740
1000 Oai Id
  1. oai:frl.publisso.de:frl:6509740 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source