Download
Roysland-et-al_2024_Graphical criteria for the identification of marginal causal effects.pdf 1,12MB
WeightNameValue
1000 Titel
  • Graphical criteria for the identification of marginal causal effects in continuous-time survival and event-history analyses
1000 Autor/in
  1. Roysland, Kjetil |
  2. Ryalen, Pal Christie |
  3. Nygård, Mari |
  4. Didelez, Vanessa |
1000 Erscheinungsjahr 2025
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-10
1000 Erschienen in
1000 Quellenangabe
  • 87(1):74-97
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1093/jrsssb/qkae056 |
1000 Ergänzendes Material
  • https://academic.oup.com/jrsssb/article/87/1/74/7710677#503285869 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • We consider continuous-time survival and event-history settings, where our aim is to graphically represent causal structures allowing us to characterize when a causal parameter is identified from observational data. This causal parameter is formalized as the effect on an outcome event of a (possibly hypothetical) intervention on the intensity of a treatment process. To establish identifiability, we propose novel graphical rules indicating whether the observed information is sufficient to obtain the desired causal effect by suitable reweighting. This requires a different type of graph than in discrete time. We formally define causal semantics for the corresponding dynamic graphs that represent local independence models for multivariate counting processes. Importantly, our work highlights that causal inference from censored data relies on subtle structural assumptions on the censoring process beyond independent censoring; these can be verified graphically. Put together, our results are the first to establish graphical rules for nonparametric causal identifiability in event processes in this generality for the continuous-time case, not relying on particular parametric survival models. We conclude with a data example on Human papillomavirus (HPV) testing for cervical cancer screening, where the assumptions are illustrated graphically and the desired effect is estimated by reweighted cumulative incidence curves.
1000 Sacherschließung
lokal local independence models
lokal cervical cancer
lokal independent censoring
lokal reweighting
lokal causal inference
lokal survival analysis
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Um95c2xhbmQsIEtqZXRpbA==|https://frl.publisso.de/adhoc/uri/UnlhbGVuLCBQYWwgQ2hyaXN0aWU=|https://frl.publisso.de/adhoc/uri/Tnlnw6VyZCwgTWFyaQ==|https://orcid.org/0000-0001-8587-7706
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Graphical criteria for the identification of marginal causal effects in continuous-time survival and event-history analyses
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6510236.rdf
1000 Erstellt am 2025-02-26T13:07:24.852+0100
1000 Erstellt von 266
1000 beschreibt frl:6510236
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-03-13T10:34:24.717+0100
1000 Objekt bearb. Thu Mar 13 10:34:07 CET 2025
1000 Vgl. frl:6510236
1000 Oai Id
  1. oai:frl.publisso.de:frl:6510236 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source