Download
John-et-al_2024_Multiplicative versus additive modelling.pdf 3,89MB
WeightNameValue
1000 Titel
  • Multiplicative versus additive modelling of causal effects using instrumental variables for survival outcomes – a comparison
1000 Autor/in
  1. John, Eleanor R. |
  2. Crowther, Micheal J. |
  3. Didelez, Vanessa |
  4. Sheehan, Nuala |
1000 Erscheinungsjahr 2025
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-12-10
1000 Erschienen in
1000 Quellenangabe
  • 34(1):3-25
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1177/09622802241293765 |
  • https://pmc.ncbi.nlm.nih.gov/articles/PMC11800712/ |
1000 Ergänzendes Material
  • https://journals.sagepub.com/doi/10.1177/09622802241293765#supplementary-materials |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Instrumental variables (IVs) methods have recently gained popularity since, under certain assumptions, they may yield consistent causal effect estimators in the presence of unmeasured confounding. Existing simulation studies that evaluate the performance of IV approaches for time-to-event outcomes tend to consider either an additive or a multiplicative data-generating mechanism (DGM) and have been limited to an exponential constant baseline hazard model. In particular, the relative merits of additive versus multiplicative IV models have not been fully explored. All IV methods produce less biased estimators than naïve estimators that ignore unmeasured confounding, unless the IV is very weak and there is very little unmeasured confounding. However, the mean squared error of IV estimators may be higher than that of the naïve, biased but more stable estimators, especially when the IV is weak, the sample size is small to moderate, and the unmeasured confounding is strong. In addition, the sensitivity of IV methods to departures from their assumed DGMs differ substantially. Additive IV methods yield clearly biased effect estimators under a multiplicative DGM whereas multiplicative approaches appear less sensitive. All can be extremely variable. We would recommend that survival probabilities should always be reported alongside the relevant hazard contrasts as these can be more reliable and circumvent some of the known issues with causal interpretation of hazard contrasts. In summary, both additive IV and Cox IV methods can perform well in some circumstances but an awareness of their limitations is required in analyses of real data where the true underlying DGM is unknown.
1000 Sacherschließung
lokal instrumental variables
lokal time-to-event outcomes
lokal Causal effects
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Sm9obiwgRWxlYW5vciBSLg==|https://frl.publisso.de/adhoc/uri/Q3Jvd3RoZXIsIE1pY2hlYWwgSi4=|https://orcid.org/0000-0001-8587-7706|https://frl.publisso.de/adhoc/uri/U2hlZWhhbiwgTnVhbGE=
1000 Label
1000 Förderer
  1. NIHR Applied Research Collaboration East Midlands |
  2. https://doi.org/10.13039/501100000272 |
  3. MRC-NIHR |
1000 Fördernummer
  1. -
  2. DRF-2018-11-ST2-034
  3. MR/R025223/1
1000 Förderprogramm
  1. -
  2. Doctoral Research Fellowship
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer NIHR Applied Research Collaboration East Midlands |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000272 |
    1000 Förderprogramm Doctoral Research Fellowship
    1000 Fördernummer DRF-2018-11-ST2-034
  3. 1000 joinedFunding-child
    1000 Förderer MRC-NIHR |
    1000 Förderprogramm -
    1000 Fördernummer MR/R025223/1
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6510755.rdf
1000 Erstellt am 2025-03-21T10:57:24.109+0100
1000 Erstellt von 266
1000 beschreibt frl:6510755
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-09-12T15:05:17.136+0200
1000 Objekt bearb. Tue Mar 25 13:18:31 CET 2025
1000 Vgl. frl:6510755
1000 Oai Id
  1. oai:frl.publisso.de:frl:6510755 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source