Download
Luijken-et-al_2024_Risk-Based Decision Making.pdf 492,72KB
WeightNameValue
1000 Titel
  • Risk-Based Decision Making: Estimands for Sequential Prediction Under Interventions
1000 Autor/in
  1. Luijken, Kim |
  2. Morzywolek, Pawel |
  3. van Amsterdam, Wouter A.C. |
  4. Cinà, Giovanni |
  5. Hoogland, Jeroen |
  6. Keogh, Ruth |
  7. Krijthe, Jesse |
  8. Magliacane, Sara |
  9. van Ommen, Thijs |
  10. Peek, Niels |
  11. Putter, Hein |
  12. van Smeden, Maarten |
  13. Sperrin, Matthew |
  14. Wang, Junfen |
  15. Weir, Daniala |
  16. Didelez, Vanessa |
  17. van Geloven, Nan |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-11-28
1000 Erschienen in
1000 Quellenangabe
  • 66(8):e70011
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/bimj.70011 |
  • https://pmc.ncbi.nlm.nih.gov/articles/PMC11604027/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Prediction models are used among others to inform medical decisions on interventions. Typically, individuals with high risks of adverse outcomes are advised to undergo an intervention while those at low risk are advised to refrain from it. Standard prediction models do not always provide risks that are relevant to inform such decisions: for example, an individual may be estimated to be at low risk because similar individuals in the past received an intervention which lowered their risk. Therefore, prediction models supporting decisions should target risks belonging to defined intervention strategies. Previous works on prediction under interventions assumed that the prediction model was used only at one time point to make an intervention decision. In clinical practice, intervention decisions are rarely made only once: they might be repeated, deferred, and reevaluated. This requires estimated risks under interventions that can be reconsidered at several potential decision moments. In the current work, we highlight key considerations for formulating estimands in sequential prediction under interventions that can inform such intervention decisions. We illustrate these considerations by giving examples of estimands for a case study about choosing between vaginal delivery and cesarean section for women giving birth. Our formalization of prediction tasks in a sequential, causal, and estimand context provides guidance for future studies to ensure that the right question is answered and appropriate causal estimation approaches are chosen to develop sequential prediction models that can inform intervention decisions.
1000 Sacherschließung
lokal prediction under interventions
lokal prediction model
lokal estimand
lokal counterfactual prediction
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/THVpamtlbiwgS2lt|https://frl.publisso.de/adhoc/uri/TW9yenl3b2xlaywgUGF3ZWw=|https://frl.publisso.de/adhoc/uri/dmFuIEFtc3RlcmRhbSwgV291dGVyIEEuQy4=|https://frl.publisso.de/adhoc/uri/Q2luw6AsIEdpb3Zhbm5p|https://orcid.org/0000-0002-2397-6052|https://orcid.org/0000-0001-6504-3253|https://frl.publisso.de/adhoc/uri/S3JpanRoZSwgSmVzc2U=|https://frl.publisso.de/adhoc/uri/TWFnbGlhY2FuZSwgU2FyYQ==|https://frl.publisso.de/adhoc/uri/dmFuIE9tbWVuLCBUaGlqcw==|https://frl.publisso.de/adhoc/uri/UGVlaywgTmllbHM=|https://orcid.org/0000-0001-5395-1422|https://frl.publisso.de/adhoc/uri/dmFuIFNtZWRlbiwgTWFhcnRlbg==|https://frl.publisso.de/adhoc/uri/U3BlcnJpbiwgTWF0dGhldw==|https://frl.publisso.de/adhoc/uri/V2FuZywgSnVuZmVu|https://frl.publisso.de/adhoc/uri/V2VpciwgRGFuaWFsYQ==|https://orcid.org/0000-0001-8587-7706|https://orcid.org/0000-0002-5600-9093
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Risk-Based Decision Making: Estimands for Sequential Prediction Under Interventions
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6510760.rdf
1000 Erstellt am 2025-03-21T12:22:25.749+0100
1000 Erstellt von 266
1000 beschreibt frl:6510760
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-03-25T13:24:30.818+0100
1000 Objekt bearb. Tue Mar 25 13:23:43 CET 2025
1000 Vgl. frl:6510760
1000 Oai Id
  1. oai:frl.publisso.de:frl:6510760 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source