Download
journal.pone.0323911.pdf 1,01MB
WeightNameValue
1000 Titel
  • A study on the classification and prediction of firefighter’s operational fatigue level
1000 Autor/in
  1. XU, Mingwei |
  2. Yang, Shangxue |
  3. Wang, Ke |
  4. Yu, Chengliu |
  5. Liu, Guanlin |
  6. Dai, Chao |
  7. Wang, Ruiqi |
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-05-15
1000 Erschienen in
1000 Quellenangabe
  • 20(5):e0323911
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0323911 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080770/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Firefighting operations in high-rise building fires require firefighters to navigate complex environments while undertaking physically demanding, heavy-load tasks, which often lead to severe fatigue, impairing their operational efficiency and decision-making. This study aims to develop a robust fatigue classification and prediction model to assess and forecast firefighters’ fatigue levels. Key metrics, including electrocardiogram (ECG) signals, subjective fatigue ratings, and reaction time data, were utilized. Experiments involving six healthy adult male participants simulated firefighting scenarios, during which subjective fatigue levels (6–20 Borg’s RPE scale) and reaction times were recorded. A five-level fatigue classification was established using K-means clustering, and entropy weight analysis was applied to define a comprehensive fatigue index (F), enabling a three-tier fatigue classification: light, moderate, and severe fatigue. A BP neural network was employed for dynamic fatigue prediction, with 10 features derived from heart rate and heart rate variability (HRV) metrics serving as inputs and the comprehensive fatigue index (F) as the output. The BP neural network model achieved a high prediction accuracy with an R² value of 93.24%, demonstrating its capability to accurately predict firefighters’ fatigue states. This approach provides a scientific basis for optimizing firefighter training protocols and enhancing operational effectiveness during fire rescue missions. The findings highlight the significant potential of this method for advancing firefighter fatigue monitoring and management.
1000 Sacherschließung
lokal Electrocardiography
lokal Heart rate
lokal Fatigue
lokal Body weight
lokal Materials fatigue
lokal Reaction time
lokal Forecasting
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-8069-0221|https://frl.publisso.de/adhoc/uri/WWFuZywgU2hhbmd4dWU=|https://frl.publisso.de/adhoc/uri/V2FuZywgS2U=|https://frl.publisso.de/adhoc/uri/WXUsIENoZW5nbGl1|https://frl.publisso.de/adhoc/uri/TGl1LCBHdWFubGlu|https://frl.publisso.de/adhoc/uri/RGFpLCBDaGFv|https://frl.publisso.de/adhoc/uri/V2FuZywgUnVpcWk=
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. https://doi.org/10.13039/501100001809 |
  2. https://doi.org/10.13039/501100003213 |
  3. https://doi.org/10.13039/100031506 |
1000 Fördernummer
  1. 52404195
  2. KM202310017002
  3. 2023JBKY21
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100001809 |
    1000 Förderprogramm -
    1000 Fördernummer 52404195
  2. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100003213 |
    1000 Förderprogramm -
    1000 Fördernummer KM202310017002
  3. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100031506 |
    1000 Förderprogramm -
    1000 Fördernummer 2023JBKY21
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6511384.rdf
1000 Erstellt am 2025-05-16T11:02:17.507+0200
1000 Erstellt von 337
1000 beschreibt frl:6511384
1000 Bearbeitet von 337
1000 Zuletzt bearbeitet 2025-08-26T13:37:54.532+0200
1000 Objekt bearb. Fri May 16 11:02:51 CEST 2025
1000 Vgl. frl:6511384
1000 Oai Id
  1. oai:frl.publisso.de:frl:6511384 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source