Download
Food Science Nutrition - 2025 - Tanveer - Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop.pdf 846,35KB
WeightNameValue
1000 Titel
  • Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
1000 Autor/in
  1. Tanveer, Muhammad Usama |
  2. Munir, Kashif |
  3. Raza, Ali |
  4. Abualigah, Laith |
  5. Garay Tejería, Dra. Helena |
  6. Gonzalez, Luis Eduardo Prado |
  7. Ashraf, Imran |
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-01-02
1000 Erschienen in
1000 Quellenangabe
  • 13(1):e4655
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/fsn3.4655 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
1000 Sacherschließung
lokal precision agriculture
lokal plant disease detection
lokal transfer learning
lokal feature extraction
lokal plant leaf detection
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/VGFudmVlciwgTXVoYW1tYWQgVXNhbWE=|https://frl.publisso.de/adhoc/uri/TXVuaXIsIEthc2hpZg==|https://frl.publisso.de/adhoc/uri/UmF6YSwgQWxp|https://frl.publisso.de/adhoc/uri/QWJ1YWxpZ2FoLCBMYWl0aA==|https://orcid.org/0000-0003-0101-4781|https://frl.publisso.de/adhoc/uri/R29uemFsZXosIEx1aXMgRWR1YXJkbyBQcmFkbw==|https://orcid.org/0009-0002-4598-1482
1000 Label
1000 Förderer
  1. European University of Atlantic |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European University of Atlantic |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6511672.rdf
1000 Erstellt am 2025-06-05T11:35:21.571+0200
1000 Erstellt von 286
1000 beschreibt frl:6511672
1000 Bearbeitet von 286
1000 Zuletzt bearbeitet 2025-06-05T11:36:27.505+0200
1000 Objekt bearb. Thu Jun 05 11:36:10 CEST 2025
1000 Vgl. frl:6511672
1000 Oai Id
  1. oai:frl.publisso.de:frl:6511672 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source