Download
00234_2024_Article_3497.pdf 715,55KB
WeightNameValue
1000 Titel
  • Automated assessment of brain MRIs in multiple sclerosis patients significantly reduces reading time
1000 Autor/in
  1. Sieber, Victoria |
  2. Rusche, Thilo |
  3. Yang, Shan |
  4. Stieltjes, Bram |
  5. Fischer, Urs |
  6. Trebeschi, Stefano |
  7. Cattin, Philippe |
  8. Nguyen-Kim, Dan Linh |
  9. Psychogios, Marios-Nikos |
  10. Lieb, Johanna M. |
  11. Sporns, Peter Bernhard |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-11-08
1000 Erschienen in
1000 Quellenangabe
  • 66(12):2171-2176
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00234-024-03497-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611969/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Introduction</jats:title> <jats:p>Assessment of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) is tedious, time-consuming, and error-prone. We evaluate whether assessment of new, expanding, and contrast-enhancing MS lesions can be done more time-efficiently by radiologists with assistance of artificial intelligence (AI).</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Baseline and three follow-up (FU) MRIs of thirty-five consecutive patients diagnosed with MS were assessed by a radiologist manually, and with assistance of an AI-tool. Results were discussed with a consultant neuroradiologist and time metrics were evaluated.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The mean reading time for the resident radiologist was 9.05 min (95CI: 6.85–11:25). With AI-assistance, the reading time was reduced by 2.83 min (95CI: 3.28–2.41, <jats:italic>p</jats:italic> &lt; 0.001). The reading decreased steadily from baseline to FU3 for the resident radiologist (9.85 min baseline, 9.21 FU1, 8.64 FU2 and 8.44 FU3, <jats:italic>p</jats:italic> &lt; 0.001). Assistance of AI further remarkably decreased reading times during follow-ups (3.29 min FU1, 3.92 FU2, 3.79 FU3, <jats:italic>p</jats:italic> &lt; 0.001) but not at baseline (0.26 min, <jats:italic>p</jats:italic> = 0.96). The <jats:italic>baseline</jats:italic> reading time of the resident radiologist was 5.04 min (<jats:italic>p</jats:italic> &lt; 0.001), with each lesion adding 0.14 min (<jats:italic>p</jats:italic> &lt; 0.001). There was a substantial decrease in the <jats:italic>baseline</jats:italic> reading time from 5.04 min to 1.59 min (<jats:italic>p</jats:italic> = 0.23) with AI-assistance. Discussion of the reading results of the resident with the neuroradiology consultant (as usual in clinical routine) was exemplary done for FU-3 MRIs and added another 3 min (CI:2.27–3.76) to the reading time without AI-assistance.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>We found that AI-assisted reading of MRIs of patients with MS may be faster than evaluating these MRIs without AI-assistance.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Multiple Sclerosis/diagnostic imaging [MeSH]
lokal Female [MeSH]
lokal Brain/diagnostic imaging [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Artificial intelligence
lokal Middle Aged [MeSH]
lokal MRI
lokal AI
lokal Time Factors [MeSH]
lokal Artificial Intelligence [MeSH]
lokal Multiple sclerosis
lokal Male [MeSH]
lokal Image Interpretation, Computer-Assisted/methods [MeSH]
lokal Magnetic resonance imaging
lokal Magnetic Resonance Imaging/methods [MeSH]
lokal Automated assessment
lokal Diagnostic Neuroradiology
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U2llYmVyLCBWaWN0b3JpYQ==|https://frl.publisso.de/adhoc/uri/UnVzY2hlLCBUaGlsbw==|https://frl.publisso.de/adhoc/uri/WWFuZywgU2hhbg==|https://frl.publisso.de/adhoc/uri/U3RpZWx0amVzLCBCcmFt|https://frl.publisso.de/adhoc/uri/RmlzY2hlciwgVXJz|https://frl.publisso.de/adhoc/uri/VHJlYmVzY2hpLCBTdGVmYW5v|https://frl.publisso.de/adhoc/uri/Q2F0dGluLCBQaGlsaXBwZQ==|https://frl.publisso.de/adhoc/uri/Tmd1eWVuLUtpbSwgRGFuIExpbmg=|https://frl.publisso.de/adhoc/uri/UHN5Y2hvZ2lvcywgTWFyaW9zLU5pa29z|https://frl.publisso.de/adhoc/uri/TGllYiwgSm9oYW5uYSBNLg==|https://orcid.org/0000-0002-3028-0539
1000 Hinweis
  • DeepGreen-ID: 886f44e9ef744f438de5553a02fd8cbd ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universität Basel |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universität Basel |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6515028.rdf
1000 Erstellt am 2025-07-04T12:05:09.157+0200
1000 Erstellt von 322
1000 beschreibt frl:6515028
1000 Zuletzt bearbeitet 2025-08-15T19:42:09.814+0200
1000 Objekt bearb. Fri Aug 15 19:42:09 CEST 2025
1000 Vgl. frl:6515028
1000 Oai Id
  1. oai:frl.publisso.de:frl:6515028 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source