Download
12963_2024_Article_355.pdf 5,44MB
WeightNameValue
1000 Titel
  • Empirical prediction intervals applied to short term mortality forecasts and excess deaths
1000 Autor/in
  1. Duerst, Ricarda |
  2. Schöley, Jonas |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-12-11
1000 Erschienen in
1000 Quellenangabe
  • 22(1):34
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12963-024-00355-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796148/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title> <jats:sec> <jats:title>Background</jats:title> <jats:p>In the winter of 2022/2023, excess death estimates for Germany indicated a 10% elevation, which has led to questions about the significance of this increase in mortality. Given the inherent errors in demographic forecasting, the reliability of estimating a 10% deviation is questionable. This research addresses this issue by analyzing the error distribution in forecasts of weekly deaths. By deriving empirical prediction intervals, we provide a more accurate probabilistic study of weekly expected and excess deaths compared to the use of conventional parametric intervals.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods</jats:title> <jats:p>Using weekly death data from the Short-term Mortality Database (STMF) for 23 countries, we propose empirical prediction intervals based on the distribution of past out-of-sample forecasting errors for the study of weekly expected and excess deaths. Instead of relying on the suitability of parametric assumptions or the magnitude of errors over the fitting period, empirical prediction intervals reflect the intuitive notion that a forecast is only as precise as similar forecasts in the past turned out to be. We compare the probabilistic calibration of empirical skew-normal prediction intervals with conventional parametric prediction intervals from a negative-binomial GAM in an out-of-sample setting. Further, we use the empirical prediction intervals to quantify the probability of detecting 10% excess deaths in a given week, given pre-pandemic mortality trends.</jats:p> </jats:sec> <jats:sec> <jats:title>Results</jats:title> <jats:p>The cross-country analysis shows that the empirical skew-normal prediction intervals are overall better calibrated than the conventional parametric prediction intervals. Further, the choice of prediction interval significantly affects the severity of an excess death estimate. The empirical prediction intervals reveal that the likelihood of exceeding a 10% threshold of excess deaths varies by season. Across the 23 countries studied, finding at least 10% weekly excess deaths in a single week during summer or winter is not very unusual under non-pandemic conditions. These results contrast sharply with those derived using a standard negative-binomial GAM.</jats:p> </jats:sec> <jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Our results highlight the importance of well-calibrated prediction intervals that account for the naturally occurring seasonal uncertainty in mortality forecasting. Empirical prediction intervals provide a better performing solution for estimating forecast uncertainty in the analyses of excess deaths compared to conventional parametric intervals.</jats:p> </jats:sec>
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Empirical prediction intervals
lokal Mortality/trends [MeSH]
lokal Humans [MeSH]
lokal Excess deaths
lokal COVID-19
lokal Robustness
lokal COVID-19/mortality [MeSH]
lokal Forecasting [MeSH]
lokal Research
lokal Models, Statistical [MeSH]
lokal COVID-19 and Impact on Mortality and Population Health
lokal Cross-validation
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RHVlcnN0LCBSaWNhcmRh|https://frl.publisso.de/adhoc/uri/U2Now7ZsZXksIEpvbmFz
1000 Hinweis
  • DeepGreen-ID: 4b541bfd22ca476ab8b89af1d32a0aa9 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Max-Planck-Institut für demografische Forschung |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Max-Planck-Institut für demografische Forschung |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6517556.rdf
1000 Erstellt am 2025-07-05T05:11:33.723+0200
1000 Erstellt von 322
1000 beschreibt frl:6517556
1000 Zuletzt bearbeitet 2025-08-19T12:29:13.659+0200
1000 Objekt bearb. Tue Aug 19 12:29:13 CEST 2025
1000 Vgl. frl:6517556
1000 Oai Id
  1. oai:frl.publisso.de:frl:6517556 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source