Download
12874_2024_Article_2257.pdf 2,00MB
WeightNameValue
1000 Titel
  • Learning debiased graph representations from the OMOP common data model for synthetic data generation
1000 Autor/in
  1. Schulz, Nicolas Alexander |
  2. Carus, Jasmin |
  3. Wiederhold, Alexander Johannes |
  4. Johanns, Ole |
  5. Peters, Frederik |
  6. Rath, Natalie |
  7. Rausch, Katharina |
  8. Holleczek, Bernd |
  9. Katalinic, Alexander |
  10. the AI-CARE Working Group |
  11. Nennecke, Alice |
  12. Kusche, Henrik |
  13. Heinrichs, Vera |
  14. Eberle, Andrea |
  15. Luttmann, Sabine |
  16. Abnaof, Khalid |
  17. Kim-Wanner, Soo-Zin |
  18. Handels, Heinz |
  19. Germer, Sebastian |
  20. Halber, Marco |
  21. Richter, Martin |
  22. Pinnau, Martin |
  23. Reiner, David |
  24. Schaaf, Jannik |
  25. Storf, Holger |
  26. Hartz, Tobias |
  27. Goeken, Nils |
  28. Bösche, Janina |
  29. Stein, Alexandra |
  30. Weitmann, Kerstin |
  31. Hoffmann, Wolfgang |
  32. Labohm, Louisa |
  33. Rudolph, Christiane |
  34. Gundler, Christopher |
  35. Ückert, Frank |
  36. Gundler, Christopher |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-22
1000 Erschienen in
1000 Quellenangabe
  • 24(1):136
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-024-02257-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193245/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Generating synthetic patient data is crucial for medical research, but common approaches build up on black-box models which do not allow for expert verification or intervention. We propose a highly available method which enables synthetic data generation from real patient records in a privacy preserving and compliant fashion, is interpretable and allows for expert intervention.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Our approach ties together two established tools in medical informatics, namely OMOP as a data standard for electronic health records and Synthea as a data synthetization method. For this study, data pipelines were built which extract data from OMOP, convert them into time series format, learn temporal rules by 2 statistical algorithms (Markov chain, TARM) and 3 algorithms of causal discovery (DYNOTEARS, J-PCMCI+, LiNGAM) and map the outputs into Synthea graphs. The graphs are evaluated quantitatively by their individual and relative complexity and qualitatively by medical experts.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The algorithms were found to learn qualitatively and quantitatively different graph representations. Whereas the Markov chain results in extremely large graphs, TARM, DYNOTEARS, and J-PCMCI+ were found to reduce the data dimension during learning. The MultiGroupDirect LiNGAM algorithm was found to not be applicable to the problem statement at hand.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Only TARM and DYNOTEARS are practical algorithms for real-world data in this use case. As causal discovery is a method to debias purely statistical relationships, the gradient-based causal discovery algorithm DYNOTEARS was found to be most suitable.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Causal Discovery
lokal Algorithms [MeSH]
lokal Graphical Models
lokal DYNOTEARS
lokal Medical Informatics/methods [MeSH]
lokal Gradient-Based Causal Discovery
lokal Humans [MeSH]
lokal Standardized Electronic Health Records
lokal Structural Equation Models
lokal Constraint-based Causal Discovery
lokal Medical Informatics/statistics
lokal Temporal Association Rule Mining (TARM)
lokal Markov Chains [MeSH]
lokal Research
lokal Electronic Health Records/statistics
lokal Synthetic Data Generation
lokal Discrete Time Series
lokal Electronic Health Records/standards [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U2NodWx6LCBOaWNvbGFzIEFsZXhhbmRlcg==|https://frl.publisso.de/adhoc/uri/Q2FydXMsIEphc21pbg==|https://frl.publisso.de/adhoc/uri/V2llZGVyaG9sZCwgQWxleGFuZGVyIEpvaGFubmVz|https://frl.publisso.de/adhoc/uri/Sm9oYW5ucywgT2xl|https://frl.publisso.de/adhoc/uri/UGV0ZXJzLCBGcmVkZXJpaw==|https://frl.publisso.de/adhoc/uri/UmF0aCwgTmF0YWxpZQ==|https://frl.publisso.de/adhoc/uri/UmF1c2NoLCBLYXRoYXJpbmE=|https://frl.publisso.de/adhoc/uri/SG9sbGVjemVrLCBCZXJuZA==|https://frl.publisso.de/adhoc/uri/S2F0YWxpbmljLCBBbGV4YW5kZXI=|https://frl.publisso.de/adhoc/uri/dGhlIEFJLUNBUkUgV29ya2luZyBHcm91cA==|https://frl.publisso.de/adhoc/uri/TmVubmVja2UsIEFsaWNl|https://frl.publisso.de/adhoc/uri/S3VzY2hlLCBIZW5yaWs=|https://frl.publisso.de/adhoc/uri/SGVpbnJpY2hzLCBWZXJh|https://frl.publisso.de/adhoc/uri/RWJlcmxlLCBBbmRyZWE=|https://frl.publisso.de/adhoc/uri/THV0dG1hbm4sIFNhYmluZQ==|https://frl.publisso.de/adhoc/uri/QWJuYW9mLCBLaGFsaWQ=|https://frl.publisso.de/adhoc/uri/S2ltLVdhbm5lciwgU29vLVppbg==|https://frl.publisso.de/adhoc/uri/SGFuZGVscywgSGVpbno=|https://frl.publisso.de/adhoc/uri/R2VybWVyLCBTZWJhc3RpYW4=|https://frl.publisso.de/adhoc/uri/SGFsYmVyLCBNYXJjbw==|https://frl.publisso.de/adhoc/uri/UmljaHRlciwgTWFydGlu|https://frl.publisso.de/adhoc/uri/UGlubmF1LCBNYXJ0aW4=|https://frl.publisso.de/adhoc/uri/UmVpbmVyLCBEYXZpZA==|https://frl.publisso.de/adhoc/uri/U2NoYWFmLCBKYW5uaWs=|https://frl.publisso.de/adhoc/uri/U3RvcmYsIEhvbGdlcg==|https://frl.publisso.de/adhoc/uri/SGFydHosIFRvYmlhcw==|https://frl.publisso.de/adhoc/uri/R29la2VuLCBOaWxz|https://frl.publisso.de/adhoc/uri/QsO2c2NoZSwgSmFuaW5h|https://frl.publisso.de/adhoc/uri/U3RlaW4sIEFsZXhhbmRyYQ==|https://frl.publisso.de/adhoc/uri/V2VpdG1hbm4sIEtlcnN0aW4=|https://frl.publisso.de/adhoc/uri/SG9mZm1hbm4sIFdvbGZnYW5n|https://frl.publisso.de/adhoc/uri/TGFib2htLCBMb3Vpc2E=|https://frl.publisso.de/adhoc/uri/UnVkb2xwaCwgQ2hyaXN0aWFuZQ==|https://frl.publisso.de/adhoc/uri/R3VuZGxlciwgQ2hyaXN0b3BoZXI=|https://frl.publisso.de/adhoc/uri/w5xja2VydCwgRnJhbms=|https://frl.publisso.de/adhoc/uri/R3VuZGxlciwgQ2hyaXN0b3BoZXI=
1000 Hinweis
  • DeepGreen-ID: 1ee48fd324ab4ee0bcbc4b12ec13d9dc ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universitätsklinikum Hamburg-Eppendorf (UKE) |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Hamburg-Eppendorf (UKE) |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6517842.rdf
1000 Erstellt am 2025-07-05T07:07:43.115+0200
1000 Erstellt von 322
1000 beschreibt frl:6517842
1000 Zuletzt bearbeitet 2025-08-19T19:17:46.846+0200
1000 Objekt bearb. Tue Aug 19 19:17:46 CEST 2025
1000 Vgl. frl:6517842
1000 Oai Id
  1. oai:frl.publisso.de:frl:6517842 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source