Download
13244_2024_Article_1801.pdf 1,02MB
WeightNameValue
1000 Titel
  • Impact of AI on radiology: a EuroAIM/EuSoMII 2024 survey among members of the European Society of Radiology
1000 Autor/in
  1. Zanardo, Moreno |
  2. Visser, Jacob J. |
  3. Colarieti, Anna |
  4. Cuocolo, Renato |
  5. Klontzas, Michail E. |
  6. Pinto dos Santos, Daniel |
  7. Sardanelli, Francesco |
  8. European Society of Radiology (ESR) |
1000 Verlag Springer Vienna
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-07
1000 Erschienen in
1000 Quellenangabe
  • 15(1):240
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13244-024-01801-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458846/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:sec> <jats:title>Abstract</jats:title> <jats:p>In order to assess the perceptions and expectations of the radiology staff about artificial intelligence (AI), we conducted an online survey among ESR members (January–March 2024). It was designed considering that conducted in 2018, updated according to recent advancements and emerging topics, consisting of seven questions regarding demographics and professional background and 28 AI questions. Of 28,000 members contacted, 572 (2%) completed the survey. AI impact was predominantly expected on breast and oncologic imaging, primarily involving CT, mammography, and MRI, and in the detection of abnormalities in asymptomatic subjects. About half of responders did not foresee an impact of AI on job opportunities. For 273/572 respondents (48%), AI-only reports would not be accepted by patients; and 242/572 respondents (42%) think that the use of AI systems will not change the relationship between the radiological team and the patient. According to 255/572 respondents (45%), radiologists will take responsibility for any AI output that may influence clinical decision-making. Of 572 respondents, 274 (48%) are currently using AI, 153 (27%) are not, and 145 (25%) are planning to do so. In conclusion, ESR members declare familiarity with AI technologies, as well as recognition of their potential benefits and challenges. Compared to the 2018 survey, the perception of AI's impact on job opportunities is in general slightly less optimistic (more positive from AI users/researchers), while the radiologist’s responsibility for AI outputs is confirmed. The use of large language models is declared not only limited to research, highlighting the need for education in AI and its regulations.</jats:p> </jats:sec><jats:sec> <jats:title>Critical relevance statement</jats:title> <jats:p>This study critically evaluates the current impact of AI on radiology, revealing significant usage patterns and clinical implications, thereby guiding future integration strategies to enhance efficiency and patient care in clinical radiology.</jats:p> </jats:sec><jats:sec> <jats:title>Key Points</jats:title> <jats:p><jats:list list-type='bullet'> <jats:list-item> <jats:p>The survey examines ESR member's views about the impact of AI on radiology practice.</jats:p> </jats:list-item> <jats:list-item> <jats:p>AI use is relevant in CT and MRI, with varying impacts on job roles.</jats:p> </jats:list-item> <jats:list-item> <jats:p>AI tools enhance clinical efficiency but require radiologist oversight for patient acceptance.</jats:p> </jats:list-item> </jats:list></jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Original Article
lokal Artificial intelligence
lokal Radiology
lokal Surveys and questionnaires
lokal Diagnostic imaging
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WmFuYXJkbywgTW9yZW5v|https://frl.publisso.de/adhoc/uri/Vmlzc2VyLCBKYWNvYiBKLg==|https://frl.publisso.de/adhoc/uri/Q29sYXJpZXRpLCBBbm5h|https://frl.publisso.de/adhoc/uri/Q3VvY29sbywgUmVuYXRv|https://frl.publisso.de/adhoc/uri/S2xvbnR6YXMsIE1pY2hhaWwgRS4=|https://frl.publisso.de/adhoc/uri/UGludG8gZG9zIFNhbnRvcywgRGFuaWVs|https://orcid.org/0000-0001-6545-9427|https://frl.publisso.de/adhoc/uri/RXVyb3BlYW4gU29jaWV0eSBvZiBSYWRpb2xvZ3kgKEVTUik=
1000 Hinweis
  • DeepGreen-ID: 1c28d88cd3594fab8736961ae2b5a924 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6517847.rdf
1000 Erstellt am 2025-07-05T07:09:50.634+0200
1000 Erstellt von 322
1000 beschreibt frl:6517847
1000 Zuletzt bearbeitet 2025-08-19T19:09:26.619+0200
1000 Objekt bearb. Tue Aug 19 19:09:26 CEST 2025
1000 Vgl. frl:6517847
1000 Oai Id
  1. oai:frl.publisso.de:frl:6517847 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source