Download
11548_2024_Article_3145.pdf 965,52KB
WeightNameValue
1000 Titel
  • One model to use them all: training a segmentation model with complementary datasets
1000 Autor/in
  1. Jenke, Alexander Caspar |
  2. Bodenstedt, Sebastian |
  3. Kolbinger, Fiona R. |
  4. Distler, Marius |
  5. Weitz, Jürgen |
  6. Speidel, Stefanie |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-04-27
1000 Erschienen in
1000 Quellenangabe
  • 19(6):1233-1241
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03145-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178567/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Understanding surgical scenes is crucial for computer-assisted surgery systems to provide intelligent assistance functionality. One way of achieving this is via scene segmentation using machine learning (ML). However, such ML models require large amounts of annotated training data, containing examples of all relevant object classes, which are rarely available. In this work, we propose a method to combine multiple partially annotated datasets, providing complementary annotations, into one model, enabling better scene segmentation and the use of multiple readily available datasets.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Our method aims to combine available data with complementary labels by leveraging mutual exclusive properties to maximize information. Specifically, we propose to use positive annotations of other classes as negative samples and to exclude background pixels of these binary annotations, as we cannot tell if a positive prediction by the model is correct.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>We evaluate our method by training a DeepLabV3 model on the publicly available Dresden Surgical Anatomy Dataset, which provides multiple subsets of binary segmented anatomical structures. Our approach successfully combines 6 classes into one model, significantly increasing the overall Dice Score by 4.4% compared to an ensemble of models trained on the classes individually. By including information on multiple classes, we were able to reduce the confusion between classes, e.g. a 24% drop for stomach and colon.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>By leveraging multiple datasets and applying mutual exclusion constraints, we developed a method that improves surgical scene segmentation performance without the need for fully annotated datasets. Our results demonstrate the feasibility of training a model on multiple complementary datasets. This paves the way for future work further alleviating the need for one specialized large, fully segmented dataset but instead the use of already existing datasets.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Dataset availability
lokal Surgical scene understanding
lokal Multi-class segmentation
lokal Surgical data science
lokal Full scene segmentation
lokal Datasets as Topic [MeSH]
lokal Humans [MeSH]
lokal Surgery, Computer-Assisted/methods [MeSH]
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Original Article
lokal Databases, Factual [MeSH]
lokal Machine Learning [MeSH]
lokal Computer-assisted surgery
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-4675-417X|https://frl.publisso.de/adhoc/uri/Qm9kZW5zdGVkdCwgU2ViYXN0aWFu|https://frl.publisso.de/adhoc/uri/S29sYmluZ2VyLCBGaW9uYSBSLg==|https://frl.publisso.de/adhoc/uri/RGlzdGxlciwgTWFyaXVz|https://frl.publisso.de/adhoc/uri/V2VpdHosIErDvHJnZW4=|https://frl.publisso.de/adhoc/uri/U3BlaWRlbCwgU3RlZmFuaWU=
1000 Hinweis
  • DeepGreen-ID: b9396714809449669d1cda49fa99c301 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Bundesministerium für Gesundheit |
  2. Deutsches Krebsforschungszentrum |
  3. Deutsche Forschungsgemeinschaft |
  4. Horizon 2020 Framework Programme |
  5. Joachim Herz Stiftung |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
  5. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Gesundheit |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Deutsches Krebsforschungszentrum |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 Framework Programme |
    1000 Förderprogramm -
    1000 Fördernummer -
  5. 1000 joinedFunding-child
    1000 Förderer Joachim Herz Stiftung |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6518029.rdf
1000 Erstellt am 2025-07-05T08:21:54.760+0200
1000 Erstellt von 322
1000 beschreibt frl:6518029
1000 Zuletzt bearbeitet 2025-08-19T19:29:02.420+0200
1000 Objekt bearb. Tue Aug 19 19:29:02 CEST 2025
1000 Vgl. frl:6518029
1000 Oai Id
  1. oai:frl.publisso.de:frl:6518029 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source