Download
12874_2024_Article_2180.pdf 1,64MB
WeightNameValue
1000 Titel
  • A parametric additive hazard model for time-to-event analysis
1000 Autor/in
  1. Voeltz, Dina |
  2. Hoyer, Annika |
  3. Forkel, Amelie |
  4. Schwandt, Anke |
  5. Kuss, Oliver |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-24
1000 Erschienen in
1000 Quellenangabe
  • 24(1):48
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-024-02180-y |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893628/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>In recent years, the use of non- and semi-parametric models which estimate hazard ratios for analysing time-to-event outcomes is continuously criticized in terms of interpretation, technical implementation, and flexibility. Hazard ratios in particular are critically discussed for their misleading interpretation as relative risks and their non-collapsibility. Additive hazard models do not have these drawbacks but are rarely used because they assume a non- or semi-parametric additive hazard which renders computation and interpretation complicated.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>As a remedy, we propose a new parametric additive hazard model that allows results to be reported on the original time rather than on the hazard scale. Being an essentially parametric model, survival, hazard and probability density functions are directly available. Parameter estimation is straightforward by maximizing the log-likelihood function.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Applying the model to different parametric distributions in a simulation study and in an exemplary application using data from a study investigating medical care to lung cancer patients, we show that the approach works well in practice.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Our proposed parametric additive hazard model can serve as a powerful tool to analyze time-to-event outcomes due to its simple interpretation, flexibility and facilitated parameter estimation.</jats:p></jats:sec>
1000 Sacherschließung
lokal Survival analysis
lokal Likelihood Functions [MeSH]
lokal Proportional Hazards Models [MeSH]
lokal Research
lokal Humans [MeSH]
lokal Models, Statistical [MeSH]
lokal Additive hazard
lokal Survival Analysis [MeSH]
lokal Computer Simulation [MeSH]
lokal Time-to-event model
lokal Parametric modeling
lokal Risk [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-7579-7144|https://orcid.org/0000-0002-0241-9951|https://frl.publisso.de/adhoc/uri/Rm9ya2VsLCBBbWVsaWU=|https://orcid.org/0000-0003-3041-0759|https://orcid.org/0000-0003-3301-5869
1000 Hinweis
  • DeepGreen-ID: 20efdb9a52df461ba04b9b2966b696dc ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universität Bielefeld |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. A parametric additive hazard model for time-to-event analysis
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universität Bielefeld |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6518054.rdf
1000 Erstellt am 2025-07-05T08:32:24.660+0200
1000 Erstellt von 322
1000 beschreibt frl:6518054
1000 Zuletzt bearbeitet 2025-08-19T10:04:22.314+0200
1000 Objekt bearb. Tue Aug 19 10:04:22 CEST 2025
1000 Vgl. frl:6518054
1000 Oai Id
  1. oai:frl.publisso.de:frl:6518054 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source