Download
43441_2024_Article_707.pdf 1,99MB
WeightNameValue
1000 Titel
  • Pharmacometrics-Enhanced Bayesian Borrowing for Pediatric Extrapolation – A Case Study of the DINAMO Trial
1000 Autor/in
  1. Sailer, Martin Oliver |
  2. Neubacher, Dietmar |
  3. Johnston, Curtis |
  4. Rogers, James |
  5. Wiens, Matthew |
  6. Pérez-Pitarch, Alejandro |
  7. Tartakovsky, Igor |
  8. Marquard, Jan |
  9. Laffel, Lori M. |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-07
1000 Erschienen in
1000 Quellenangabe
  • 59(1):112-123
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s43441-024-00707-5 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706882/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Bayesian borrowing analyses have an important role in the design and analysis of pediatric trials. This paper describes use of a prespecified Pharmacometrics Enhanced Bayesian Borrowing (PEBB) analysis that was conducted to overcome an expectation for reduced statistical power in the pediatric DINAMO trial due to a greater than expected variability in the primary endpoint. The DINAMO trial assessed the efficacy and safety of an empagliflozin dosing regimen versus placebo and linagliptin versus placebo on glycemic control (change in HbA1c over 26 weeks) in young people with type 2 diabetes (T2D). Previously fitted pharmacokinetic and exposure-response models for empagliflozin and linagliptin based on available historical data in adult and pediatric patients with T2D were used to simulate participant data and derive the informative component of a Bayesian robust mixture prior distribution. External experts and representatives from the U.S. Food and Drug Administration provided recommendations to determine the effective sample size of the prior and the weight of the informative prior component. Separate exposure response-based Bayesian borrowing analyses for empagliflozin and linagliptin showed posterior mean and 95% credible intervals that were consistent with the trial results. Sensitivity analyses with a full range of alternative weights were also performed. The use of PEBB in this analysis combined advantages of mechanistic modeling of pharmacometric differences between adults and young people with T2D, with advantages of partial extrapolation through Bayesian dynamic borrowing. Our findings suggest that the described PEBB approach is a promising option to optimize the power for future pediatric trials.</jats:p>
1000 Sacherschließung
lokal Empagliflozin
lokal Research
lokal Pediatric extrapolation
lokal Linagliptin
lokal Bayesian dynamic borrowing
lokal Modeling
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U2FpbGVyLCBNYXJ0aW4gT2xpdmVy|https://frl.publisso.de/adhoc/uri/TmV1YmFjaGVyLCBEaWV0bWFy|https://frl.publisso.de/adhoc/uri/Sm9obnN0b24sIEN1cnRpcw==|https://frl.publisso.de/adhoc/uri/Um9nZXJzLCBKYW1lcw==|https://frl.publisso.de/adhoc/uri/V2llbnMsIE1hdHRoZXc=|https://frl.publisso.de/adhoc/uri/UMOpcmV6LVBpdGFyY2gsIEFsZWphbmRybw==|https://frl.publisso.de/adhoc/uri/VGFydGFrb3Zza3ksIElnb3I=|https://frl.publisso.de/adhoc/uri/TWFycXVhcmQsIEphbg==|https://frl.publisso.de/adhoc/uri/TGFmZmVsLCBMb3JpIE0u
1000 Hinweis
  • DeepGreen-ID: daa48c1f5dd1446f913806fb818044c9 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Boehringer Ingelheim |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Boehringer Ingelheim |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6518132.rdf
1000 Erstellt am 2025-07-05T09:05:20.055+0200
1000 Erstellt von 322
1000 beschreibt frl:6518132
1000 Zuletzt bearbeitet 2025-08-19T19:33:11.007+0200
1000 Objekt bearb. Tue Aug 19 19:33:11 CEST 2025
1000 Vgl. frl:6518132
1000 Oai Id
  1. oai:frl.publisso.de:frl:6518132 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source