Download
00234_2024_Article_3311.pdf 914,28KB
WeightNameValue
1000 Titel
  • Accuracy of automated segmentation and volumetry of acute intracerebral hemorrhage following minimally invasive surgery using a patch-based convolutional neural network in a small dataset
1000 Autor/in
  1. Elsheikh, Samer |
  2. Elbaz, Ahmed |
  3. Rau, Alexander |
  4. Demerath, Theo |
  5. Fung, Christian |
  6. Kellner, Elias |
  7. Urbach, Horst |
  8. Reisert, Marco |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-17
1000 Erschienen in
1000 Quellenangabe
  • 66(4):601-608
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00234-024-03311-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937775/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>In cases of acute intracerebral hemorrhage (ICH) volume estimation is of prognostic and therapeutic value following minimally invasive surgery (MIS). The ABC/2 method is widely used, but suffers from inaccuracies and is time consuming. Supervised machine learning using convolutional neural networks (CNN), trained on large datasets, is suitable for segmentation tasks in medical imaging. Our objective was to develop a CNN based machine learning model for the segmentation of ICH and of the drain and volumetry of ICH following MIS of acute supratentorial ICH on a relatively small dataset.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Ninety two scans were assigned to training (n = 29 scans), validation (n = 4 scans) and testing (n = 59 scans) datasets. The mean age (SD) was 70 (± 13.56) years. Male patients were 36. A hierarchical, patch-based CNN for segmentation of ICH and drain was trained. Volume of ICH was calculated from the segmentation mask.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The best performing model achieved a Dice similarity coefficient of 0.86 and 0.91 for the ICH and drain respectively. Automated ICH volumetry yielded high agreement with ground truth (Intraclass correlation coefficient = 0.94 [95% CI: 0.91, 0.97]). Average difference in the ICH volume was 1.33 mL.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Using a relatively small dataset, originating from different CT-scanners and with heterogeneous voxel dimensions, we applied a patch-based CNN framework and successfully developed a machine learning model, which accurately segments the intracerebral hemorrhage (ICH) and the drains. This provides automated and accurate volumetry of the bleeding in acute ICH treated with minimally invasive surgery.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Minimally invasive surgery
lokal Aged, 80 and over [MeSH]
lokal Machine learning
lokal Aged [MeSH]
lokal Humans [MeSH]
lokal Automated volumetry
lokal Middle Aged [MeSH]
lokal Minimally Invasive Surgical Procedures [MeSH]
lokal Tomography, X-Ray Computed/methods [MeSH]
lokal Neural Networks, Computer [MeSH]
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Advanced Neuroimaging
lokal Male [MeSH]
lokal Convolutional neural network
lokal Intracerebral hemorrhage
lokal Machine Learning [MeSH]
lokal Cerebral Hemorrhage [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3796-5709|https://frl.publisso.de/adhoc/uri/RWxiYXosIEFobWVk|https://orcid.org/0000-0001-5881-6043|https://orcid.org/0000-0002-5869-1110|https://frl.publisso.de/adhoc/uri/RnVuZywgQ2hyaXN0aWFu|https://orcid.org/0000-0001-9494-2354|https://orcid.org/0000-0001-7264-4807|https://frl.publisso.de/adhoc/uri/UmVpc2VydCwgTWFyY28=
1000 Hinweis
  • DeepGreen-ID: 2ed94064228a444183d1c3d004854a07 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universitätsklinikum Freiburg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Freiburg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6518392.rdf
1000 Erstellt am 2025-07-05T10:55:22.307+0200
1000 Erstellt von 322
1000 beschreibt frl:6518392
1000 Zuletzt bearbeitet 2025-08-19T10:05:22.844+0200
1000 Objekt bearb. Tue Aug 19 10:05:22 CEST 2025
1000 Vgl. frl:6518392
1000 Oai Id
  1. oai:frl.publisso.de:frl:6518392 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source