Download
41523_2024_Article_611.pdf 1,25MB
WeightNameValue
1000 Titel
  • Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer
1000 Autor/in
  1. Janssen, L. M. |
  2. Janse, Mark |
  3. Penning de Vries, B. B. L. |
  4. van der Velden, B. H. M. |
  5. Wolters-van der Ben, E. J. M. |
  6. van den Bosch, S. M. |
  7. Sartori, A. |
  8. Jovelet, C. |
  9. Agterof, M. J. |
  10. Ten Bokkel Huinink, D. |
  11. Bouman-Wammes, E. W. |
  12. van Diest, P. J. |
  13. van der Wall, E. |
  14. Elias, S. G. |
  15. Gilhuijs, Kenneth |
1000 Verlag Nature Publishing Group UK
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-01-20
1000 Erschienen in
1000 Quellenangabe
  • 10(1):10
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41523-024-00611-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799888/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Accurate prediction of response to neoadjuvant chemotherapy (NAC) can help tailor treatment to individual patients’ needs. Little is known about the combination of liquid biopsies and computer extracted features from multiparametric magnetic resonance imaging (MRI) for the prediction of NAC response in breast cancer. Here, we report on a prospective study with the aim to explore the predictive potential of this combination in adjunct to standard clinical and pathological information before, during and after NAC. The study was performed in four Dutch hospitals. Patients without metastases treated with NAC underwent 3 T multiparametric MRI scans before, during and after NAC. Liquid biopsies were obtained before every chemotherapy cycle and before surgery. Prediction models were developed using penalized linear regression to forecast residual cancer burden after NAC and evaluated for pathologic complete response (pCR) using leave-one-out-cross-validation (LOOCV). Sixty-one patients were included. Twenty-three patients (38%) achieved pCR. Most prediction models yielded the highest estimated LOOCV area under the curve (AUC) at the post-treatment timepoint. A clinical-only model including tumor grade, nodal status and receptor subtype yielded an estimated LOOCV AUC for pCR of 0.76, which increased to 0.82 by incorporating post-treatment radiological MRI assessment (i.e., the “clinical-radiological” model). The estimated LOOCV AUC was 0.84 after incorporation of computer-extracted MRI features, and 0.85 when liquid biopsy information was added instead of the radiological MRI assessment. Adding liquid biopsy information to the clinical-radiological resulted in an estimated LOOCV AUC of 0.86. In conclusion, inclusion of liquid biopsy-derived markers in clinical-radiological prediction models may have potential to improve prediction of pCR after NAC in breast cancer.</jats:p>
1000 Sacherschließung
lokal /692/4028/67/1857
lokal Article
lokal /692/53/2423
lokal article
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SmFuc3NlbiwgTC4gTS4=|https://orcid.org/0000-0002-0604-1204|https://frl.publisso.de/adhoc/uri/UGVubmluZyBkZSBWcmllcywgQi4gQi4gTC4=|https://frl.publisso.de/adhoc/uri/dmFuIGRlciBWZWxkZW4sIEIuIEguIE0u|https://frl.publisso.de/adhoc/uri/V29sdGVycy12YW4gZGVyIEJlbiwgRS4gSi4gTS4=|https://frl.publisso.de/adhoc/uri/dmFuIGRlbiBCb3NjaCwgUy4gTS4=|https://frl.publisso.de/adhoc/uri/U2FydG9yaSwgQS4=|https://frl.publisso.de/adhoc/uri/Sm92ZWxldCwgQy4=|https://frl.publisso.de/adhoc/uri/QWd0ZXJvZiwgTS4gSi4=|https://frl.publisso.de/adhoc/uri/VGVuIEJva2tlbCBIdWluaW5rLCBELg==|https://frl.publisso.de/adhoc/uri/Qm91bWFuLVdhbW1lcywgRS4gVy4=|https://frl.publisso.de/adhoc/uri/dmFuIERpZXN0LCBQLiBKLg==|https://frl.publisso.de/adhoc/uri/dmFuIGRlciBXYWxsLCBFLg==|https://frl.publisso.de/adhoc/uri/RWxpYXMsIFMuIEcu|https://orcid.org/0000-0003-2087-8649
1000 Hinweis
  • DeepGreen-ID: ea22270fd2e64685a9ad88e192167a67 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Horizon 2020 Framework Programme |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 Framework Programme |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6518414.rdf
1000 Erstellt am 2025-07-05T11:06:40.187+0200
1000 Erstellt von 322
1000 beschreibt frl:6518414
1000 Zuletzt bearbeitet 2025-08-19T19:36:55.858+0200
1000 Objekt bearb. Tue Aug 19 19:36:55 CEST 2025
1000 Vgl. frl:6518414
1000 Oai Id
  1. oai:frl.publisso.de:frl:6518414 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source