Download
13643_2024_Article_2575.pdf 1,61MB
WeightNameValue
1000 Titel
  • Title and abstract screening for literature reviews using large language models: an exploratory study in the biomedical domain
1000 Autor/in
  1. Dennstädt, Fabio |
  2. Zink, Johannes |
  3. Putora, Paul Martin |
  4. Hastings, Janna |
  5. Cihoric, Nikola |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-15
1000 Erschienen in
1000 Quellenangabe
  • 13(1):158
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13643-024-02575-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180407/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Systematically screening published literature to determine the relevant publications to synthesize in a review is a time-consuming and difficult task. Large language models (LLMs) are an emerging technology with promising capabilities for the automation of language-related tasks that may be useful for such a purpose.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>LLMs were used as part of an automated system to evaluate the relevance of publications to a certain topic based on defined criteria and based on the title and abstract of each publication. A Python script was created to generate structured prompts consisting of text strings for instruction, title, abstract, and relevant criteria to be provided to an LLM. The relevance of a publication was evaluated by the LLM on a Likert scale (low relevance to high relevance). By specifying a threshold, different classifiers for inclusion/exclusion of publications could then be defined. The approach was used with four different openly available LLMs on ten published data sets of biomedical literature reviews and on a newly human-created data set for a hypothetical new systematic literature review.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The performance of the classifiers varied depending on the LLM being used and on the data set analyzed. Regarding sensitivity/specificity, the classifiers yielded 94.48%/31.78% for the FlanT5 model, 97.58%/19.12% for the OpenHermes-NeuralChat model, 81.93%/75.19% for the Mixtral model and 97.58%/38.34% for the Platypus 2 model on the ten published data sets. The same classifiers yielded 100% sensitivity at a specificity of 12.58%, 4.54%, 62.47%, and 24.74% on the newly created data set. Changing the standard settings of the approach (minor adaption of instruction prompt and/or changing the range of the Likert scale from 1–5 to 1–10) had a considerable impact on the performance.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>LLMs can be used to evaluate the relevance of scientific publications to a certain review topic and classifiers based on such an approach show some promising results. To date, little is known about how well such systems would perform if used prospectively when conducting systematic literature reviews and what further implications this might have. However, it is likely that in the future researchers will increasingly use LLMs for evaluating and classifying scientific publications.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Large language models
lokal Title and abstract screening
lokal Systematic Reviews as Topic [MeSH]
lokal Language [MeSH]
lokal Research
lokal Natural Language Processing [MeSH]
lokal Natural language processing
lokal Systematic literature review
lokal Biomedical Research [MeSH]
lokal Biomedicine
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-5374-8720|https://frl.publisso.de/adhoc/uri/WmluaywgSm9oYW5uZXM=|https://frl.publisso.de/adhoc/uri/UHV0b3JhLCBQYXVsIE1hcnRpbg==|https://frl.publisso.de/adhoc/uri/SGFzdGluZ3MsIEphbm5h|https://frl.publisso.de/adhoc/uri/Q2lob3JpYywgTmlrb2xh
1000 Hinweis
  • DeepGreen-ID: 11a1d0798fc844cf8dd084ddd0349fec ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6518495.rdf
1000 Erstellt am 2025-07-05T11:38:41.409+0200
1000 Erstellt von 322
1000 beschreibt frl:6518495
1000 Zuletzt bearbeitet 2025-08-19T20:02:45.461+0200
1000 Objekt bearb. Tue Aug 19 20:02:45 CEST 2025
1000 Vgl. frl:6518495
1000 Oai Id
  1. oai:frl.publisso.de:frl:6518495 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source