Download
00270_2023_Article_3563.pdf 591,64KB
WeightNameValue
1000 Titel
  • Feasibility of GPT-3 and GPT-4 for in-Depth Patient Education Prior to Interventional Radiological Procedures: A Comparative Analysis
1000 Autor/in
  1. Scheschenja, Michael |
  2. Viniol, Simon |
  3. Bastian, Moritz B. |
  4. Wessendorf, Joel |
  5. König, Alexander M. |
  6. Mahnken, Andreas H. |
1000 Verlag Springer US
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-10-23
1000 Erschienen in
1000 Quellenangabe
  • 47(2):245-250
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00270-023-03563-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844465/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>This study explores the utility of the large language models, GPT-3 and GPT-4, for in-depth patient education prior to interventional radiology procedures. Further, differences in answer accuracy between the models were assessed.</jats:p> </jats:sec><jats:sec> <jats:title>Materials and methods</jats:title> <jats:p>A total of 133 questions related to three specific interventional radiology procedures (Port implantation, PTA and TACE) covering general information as well as preparation details, risks and complications and post procedural aftercare were compiled. Responses of GPT-3 and GPT-4 were assessed for their accuracy by two board-certified radiologists using a 5-point Likert scale. The performance difference between GPT-3 and GPT-4 was analyzed.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Both GPT-3 and GPT-4 responded with (5) “completely correct” (4) “very good” answers for the majority of questions ((5) 30.8% + (4) 48.1% for GPT-3 and (5) 35.3% + (4) 47.4% for GPT-4). GPT-3 and GPT-4 provided (3) “acceptable” responses 15.8% and 15.0% of the time, respectively. GPT-3 provided (2) “mostly incorrect” responses in 5.3% of instances, while GPT-4 had a lower rate of such occurrences, at just 2.3%. No response was identified as potentially harmful. GPT-4 was found to give significantly more accurate responses than GPT-3 (<jats:italic>p</jats:italic> = 0.043).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>GPT-3 and GPT-4 emerge as relatively safe and accurate tools for patient education in interventional radiology. GPT-4 showed a slightly better performance. The feasibility and accuracy of these models suggest their promising role in revolutionizing patient care. Still, users need to be aware of possible limitations.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Certification [MeSH]
lokal Humans [MeSH]
lokal Artificial intelligence
lokal Feasibility Studies [MeSH]
lokal Radiology, Interventional [MeSH]
lokal Awareness [MeSH]
lokal Large language models
lokal Interventional radiology
lokal Patient Education as Topic [MeSH]
lokal Patient education
lokal Chat-GPT
lokal Other
lokal Short Communication
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0009-0001-5268-0672|https://frl.publisso.de/adhoc/uri/VmluaW9sLCBTaW1vbg==|https://frl.publisso.de/adhoc/uri/QmFzdGlhbiwgTW9yaXR6IEIu|https://frl.publisso.de/adhoc/uri/V2Vzc2VuZG9yZiwgSm9lbA==|https://frl.publisso.de/adhoc/uri/S8O2bmlnLCBBbGV4YW5kZXIgTS4=|https://frl.publisso.de/adhoc/uri/TWFobmtlbiwgQW5kcmVhcyBILg==
1000 Hinweis
  • DeepGreen-ID: 7004f36513f541aea5fffff5651d7bf8 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Philipps-Universität Marburg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Philipps-Universität Marburg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6518919.rdf
1000 Erstellt am 2025-07-05T14:26:13.407+0200
1000 Erstellt von 322
1000 beschreibt frl:6518919
1000 Zuletzt bearbeitet 2025-08-15T21:13:45.736+0200
1000 Objekt bearb. Fri Aug 15 21:13:45 CEST 2025
1000 Vgl. frl:6518919
1000 Oai Id
  1. oai:frl.publisso.de:frl:6518919 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source