Download
11548_2024_Article_3143.pdf 1,80MB
WeightNameValue
1000 Titel
  • Neural digital twins: reconstructing complex medical environments for spatial planning in virtual reality
1000 Autor/in
  1. Kleinbeck, Constantin |
  2. Zhang, Han |
  3. Killeen, Benjamin D. |
  4. Roth, Daniel |
  5. Unberath, Mathias |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-06
1000 Erschienen in
1000 Quellenangabe
  • 19(7):1301-1312
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03143-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230969/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Specialized robotic and surgical tools are increasing the complexity of operating rooms (ORs), requiring elaborate preparation especially when techniques or devices are to be used for the first time. Spatial planning can improve efficiency and identify procedural obstacles ahead of time, but real ORs offer little availability to optimize space utilization. Methods for creating reconstructions of physical setups, i.e., digital twins, are needed to enable immersive spatial planning of such complex environments in virtual reality.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We present a neural rendering-based method to create immersive digital twins of complex medical environments and devices from casual video capture that enables spatial planning of surgical scenarios. To evaluate our approach we recreate two operating rooms and ten objects through neural reconstruction, then conduct a user study with 21 graduate students carrying out planning tasks in the resulting virtual environment. We analyze task load, presence, perceived utility, plus exploration and interaction behavior compared to low visual complexity versions of the same environments.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Results show significantly increased perceived utility and presence using the neural reconstruction-based environments, combined with higher perceived workload and exploratory behavior. There’s no significant difference in interactivity.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>We explore the feasibility of using modern reconstruction techniques to create digital twins of complex medical environments and objects. Without requiring expert knowledge or specialized hardware, users can create, explore and interact with objects in virtual environments. Results indicate benefits like high perceived utility while being technically approachable, which may indicate promise of this approach for spatial planning and beyond.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Female [MeSH]
lokal Human–computer interaction
lokal Machine learning
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Operating Rooms [MeSH]
lokal NeRF
lokal Feasibility Studies [MeSH]
lokal Original Article
lokal Mixed reality
lokal Male [MeSH]
lokal User-Computer Interface [MeSH]
lokal Robotic Surgical Procedures/methods [MeSH]
lokal Robotic surgery
lokal Virtual Reality [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-2800-0603|https://frl.publisso.de/adhoc/uri/WmhhbmcsIEhhbg==|https://frl.publisso.de/adhoc/uri/S2lsbGVlbiwgQmVuamFtaW4gRC4=|https://frl.publisso.de/adhoc/uri/Um90aCwgRGFuaWVs|https://frl.publisso.de/adhoc/uri/VW5iZXJhdGgsIE1hdGhpYXM=
1000 Hinweis
  • DeepGreen-ID: 4101943a3dfd4cfd80dd686a1ed49533 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Digital Health and Innovation Platform |
  2. National Science Foundation |
  3. Link Foundation |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Digital Health and Innovation Platform |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer National Science Foundation |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Link Foundation |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519135.rdf
1000 Erstellt am 2025-07-05T15:54:35.676+0200
1000 Erstellt von 322
1000 beschreibt frl:6519135
1000 Zuletzt bearbeitet 2025-08-14T07:42:24.767+0200
1000 Objekt bearb. Thu Aug 14 07:42:24 CEST 2025
1000 Vgl. frl:6519135
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519135 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source