Download
12874_2024_Article_2265.pdf 1,48MB
WeightNameValue
1000 Titel
  • Outcome risk model development for heterogeneity of treatment effect analyses: a comparison of non-parametric machine learning methods and semi-parametric statistical methods
1000 Autor/in
  1. Xu, Edward |
  2. Vanghelof, Joseph |
  3. Wang, Yiyang |
  4. Patel, Anisha |
  5. Furst, Jacob |
  6. Raicu, Daniela Stan |
  7. Neumann, Johannes Tobias |
  8. Wolfe, Rory |
  9. Gao, Caroline X. |
  10. McNeil, John J. |
  11. Shah, Raj C. |
  12. Tchoua, Roselyne |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-23
1000 Erschienen in
1000 Quellenangabe
  • 24(1):158
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-024-02265-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265457/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>In randomized clinical trials, treatment effects may vary, and this possibility is referred to as heterogeneity of treatment effect (HTE). One way to quantify HTE is to partition participants into subgroups based on individual’s risk of experiencing an outcome, then measuring treatment effect by subgroup. Given the limited availability of externally validated outcome risk prediction models, internal models (created using the same dataset in which heterogeneity of treatment analyses also will be performed) are commonly developed for subgroup identification. We aim to compare different methods for generating internally developed outcome risk prediction models for subject partitioning in HTE analysis.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Three approaches were selected for generating subgroups for the 2,441 participants from the United States enrolled in the ASPirin in Reducing Events in the Elderly (ASPREE) randomized controlled trial. An extant proportional hazards-based outcomes predictive risk model developed on the overall ASPREE cohort of 19,114 participants was identified and was used to partition United States’ participants by risk of experiencing a composite outcome of death, dementia, or persistent physical disability. Next, two supervised non-parametric machine learning outcome classifiers, decision trees and random forests, were used to develop multivariable risk prediction models and partition participants into subgroups with varied risks of experiencing the composite outcome. Then, we assessed how the partitioning from the proportional hazard model compared to those generated by the machine learning models in an HTE analysis of the 5-year absolute risk reduction (ARR) and hazard ratio for aspirin vs. placebo in each subgroup. Cochran’s Q test was used to detect if ARR varied significantly by subgroup.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The proportional hazard model was used to generate 5 subgroups using the quintiles of the estimated risk scores; the decision tree model was used to generate 6 subgroups (6 automatically determined tree leaves); and the random forest model was used to generate 5 subgroups using the quintiles of the prediction probability as risk scores. Using the semi-parametric proportional hazards model, the ARR at 5 years was 15.1% (95% CI 4.0–26.3%) for participants with the highest 20% of predicted risk. Using the random forest model, the ARR at 5 years was 13.7% (95% CI 3.1–24.4%) for participants with the highest 20% of predicted risk. The highest outcome risk group in the decision tree model also exhibited a risk reduction, but the confidence interval was wider (5-year ARR = 17.0%, 95% CI= -5.4–39.4%). Cochran’s Q test indicated ARR varied significantly only by subgroups created using the proportional hazards model. The hazard ratio for aspirin vs. placebo therapy did not significantly vary by subgroup in any of the models. The highest risk groups for the proportional hazards model and random forest model contained 230 participants each, while the highest risk group in the decision tree model contained 41 participants.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The choice of technique for internally developed models for outcome risk subgroups influences HTE analyses. The rationale for the use of a particular subgroup determination model in HTE analyses needs to be explicitly defined based on desired levels of explainability (with features importance), uncertainty of prediction, chances of overfitting, and assumptions regarding the underlying data structure. Replication of these analyses using data from other mid-size clinical trials may help to establish guidance for selecting an outcomes risk prediction modelling technique for HTE analyses.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Aged [MeSH]
lokal United States [MeSH]
lokal Outcome Assessment, Health Care/statistics
lokal Randomized Controlled Trials as Topic/methods [MeSH]
lokal Aspirin
lokal Risk Assessment/statistics
lokal Data science methodologies
lokal Proportional Hazards Models [MeSH]
lokal Decision Trees [MeSH]
lokal Male [MeSH]
lokal Models, Statistical [MeSH]
lokal Randomized Controlled Trials as Topic/statistics
lokal Machine Learning [MeSH]
lokal Outcome risk modelling
lokal Risk Assessment/methods [MeSH]
lokal Female [MeSH]
lokal Humans [MeSH]
lokal Random forest
lokal Treatment Outcome [MeSH]
lokal Heterogeneity of treatment effect
lokal Outcome Assessment, Health Care/methods [MeSH]
lokal Disability-free longevity
lokal Research
lokal Clinical trial
lokal Aspirin/therapeutic use [MeSH]
lokal Decision tree
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WHUsIEVkd2FyZA==|https://frl.publisso.de/adhoc/uri/VmFuZ2hlbG9mLCBKb3NlcGg=|https://frl.publisso.de/adhoc/uri/V2FuZywgWWl5YW5n|https://frl.publisso.de/adhoc/uri/UGF0ZWwsIEFuaXNoYQ==|https://frl.publisso.de/adhoc/uri/RnVyc3QsIEphY29i|https://frl.publisso.de/adhoc/uri/UmFpY3UsIERhbmllbGEgU3Rhbg==|https://frl.publisso.de/adhoc/uri/TmV1bWFubiwgSm9oYW5uZXMgVG9iaWFz|https://frl.publisso.de/adhoc/uri/V29sZmUsIFJvcnk=|https://frl.publisso.de/adhoc/uri/R2FvLCBDYXJvbGluZSBYLg==|https://frl.publisso.de/adhoc/uri/TWNOZWlsLCBKb2huIEou|https://frl.publisso.de/adhoc/uri/U2hhaCwgUmFqIEMu|https://frl.publisso.de/adhoc/uri/VGNob3VhLCBSb3NlbHluZQ==
1000 Hinweis
  • DeepGreen-ID: f87e88423593477793ad85f1a112797a ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Institutes of Health |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Institutes of Health |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519159.rdf
1000 Erstellt am 2025-07-05T16:03:02.323+0200
1000 Erstellt von 322
1000 beschreibt frl:6519159
1000 Zuletzt bearbeitet 2025-08-14T07:46:16.700+0200
1000 Objekt bearb. Thu Aug 14 07:46:16 CEST 2025
1000 Vgl. frl:6519159
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519159 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source