Download
11367_2024_Article_2332.pdf 2,08MB
WeightNameValue
1000 Titel
  • Systematising the LCA approaches’ soup: a framework based on text mining
1000 Autor/in
  1. Di Bari, Roberta |
  2. Alaux, Nicolas |
  3. Saade, Marcella |
  4. Hong, Sun Hea |
  5. Horn, Rafael |
  6. Passer, Alexander |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-02
1000 Erschienen in
1000 Quellenangabe
  • 29(9):1621-1638
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11367-024-02332-8 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>It is challenging for practitioners to navigate through the multitude of life cycle assessment (LCA) approaches due to the rich literature and a lack of systematisation. The LCA flexibility allowed by standards results in a multitude of applications and, as referred to in previous works, as an “alphabet soup”. This paper proposes a scheme for a clearer classification of currently used LCA approaches, with consideration of the 4-stage framework coming from standards.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>This systematisation was first established through literature research serving as a preliminary tentative framework. A text mining task was carried out in a second stage, involving 2044 published articles among 7558 of the last 10 years. For text mining, a dictionary collected keywords and synonyms of the LCA approaches. Such keywords were then extracted from the text together with their context (multiword). The final multiword analysis allowed the association of each keyword (i.e. each LCA approach) with a specific LCA stage (Goal and Scope, Life Cycle Inventory, Life Cycle Impact Assessment, Interpretation). The preliminary framework was adapted, further enriched and validated based on the text mining results.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>As a result of the text mining activities, the preliminary tentative framework was partially confirmed and enriched with new insights, especially in the field of “explorative” LCA approaches, which also include “prospective” and “scenario-based” LCA. For most of the currently used LCA approaches, a link to a unique LCA stage was not recorded. However, clear trends were detected. The text mining task also highlighted a high number of works in which different approaches are compared or counterposed, especially in the field of attributional and consequential LCA. Some issues were found with the connotations of “traditional” approaches, which could be defined more specifically as “non-explorative”.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Unlike other works focused on notions from selected literature, text mining activities can provide bottom-up feedback on a larger scale more automatically. In addition, this work brought out novel LCA approaches, for which future developments will confirm a final definition and systematisation. As an additional advantage, the presented methodology is easily replicable. Hence, the presented framework can be updated along with developments in LCA approaches.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Life Cycle Assessment (LCA) approaches
lokal Systematic Literature Review (SRL)
lokal Text mining
lokal Critical Review
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-0203-5755|https://frl.publisso.de/adhoc/uri/QWxhdXgsIE5pY29sYXM=|https://frl.publisso.de/adhoc/uri/U2FhZGUsIE1hcmNlbGxh|https://frl.publisso.de/adhoc/uri/SG9uZywgU3VuIEhlYQ==|https://frl.publisso.de/adhoc/uri/SG9ybiwgUmFmYWVs|https://frl.publisso.de/adhoc/uri/UGFzc2VyLCBBbGV4YW5kZXI=
1000 Hinweis
  • DeepGreen-ID: 71db3ef3736d4501b69e9ce081d66ef1 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Universität Stuttgart |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
  1. Systematising the LCA approaches’ soup: a framework based on text mining
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universität Stuttgart |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519281.rdf
1000 Erstellt am 2025-07-05T16:51:09.565+0200
1000 Erstellt von 322
1000 beschreibt frl:6519281
1000 Zuletzt bearbeitet 2025-08-14T08:03:03.243+0200
1000 Objekt bearb. Thu Aug 14 08:03:03 CEST 2025
1000 Vgl. frl:6519281
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519281 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source