Download
41747_2024_Article_444.pdf 1,65MB
WeightNameValue
1000 Titel
  • Diffusion tensor imaging in anisotropic tissues: application of reduced gradient vector schemes in peripheral nerves
1000 Autor/in
  1. Foesleitner, Olivia |
  2. Sulaj, Alba |
  3. Sturm, Volker |
  4. Kronlage, Moritz |
  5. Preisner, Fabian |
  6. Kender, Zoltan |
  7. Bendszus, Martin |
  8. Szendroedi, Julia |
  9. Heiland, Sabine |
  10. Schwarz, Daniel |
1000 Verlag Springer Vienna
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-04-02
1000 Erschienen in
1000 Quellenangabe
  • 8(1):37
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s41747-024-00444-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984907/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>In contrast to the brain, fibers within peripheral nerves have distinct monodirectional structure questioning the necessity of complex multidirectional gradient vector schemes for DTI. This proof-of-concept study investigated the diagnostic utility of reduced gradient vector schemes in peripheral nerve DTI.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Three-Tesla magnetic resonance neurography of the tibial nerve using 20-vector DTI (DTI<jats:sub>20</jats:sub>) was performed in 10 healthy volunteers, 12 patients with type 2 diabetes, and 12 age-matched healthy controls. From the full DTI<jats:sub>20</jats:sub> dataset, three reduced datasets including only two or three vectors along the <jats:italic>x</jats:italic>- and/or <jats:italic>y</jats:italic>- and <jats:italic>z</jats:italic>-axes were built to calculate major parameters. The influence of nerve angulation and intraneural connective tissue was assessed. The area under the receiver operating characteristics curve (ROC-AUC) was used for analysis.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Simplified datasets achieved excellent diagnostic accuracy equal to DTI<jats:sub>20</jats:sub> (ROC-AUC 0.847–0.868, <jats:italic>p</jats:italic> ≤ 0.005), but compared to DTI<jats:sub>20</jats:sub>, the reduced models yielded mostly lower absolute values of DTI scalars: median fractional anisotropy (FA) ≤ 0.12; apparent diffusion coefficient (ADC) ≤ 0.25; axial diffusivity ≤ 0.96, radial diffusivity ≤ 0.07). The precision of FA and ADC with the three-vector model was closest to DTI<jats:sub>20</jats:sub>. Intraneural connective tissue was negatively correlated with FA and ADC (<jats:italic>r</jats:italic> ≥ -0.49, <jats:italic>p</jats:italic> &lt; 0.001). Small deviations of nerve angulation had little effect on FA accuracy.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>In peripheral nerves, bulk tissue DTI metrics can be approximated with only three predefined gradient vectors along the scanner’s main axes, yielding similar diagnostic accuracy as a 20-vector DTI, resulting in substantial scan time reduction.</jats:p> </jats:sec><jats:sec> <jats:title>Relevance statement</jats:title> <jats:p>DTI bulk tissue parameters of peripheral nerves can be calculated with only three predefined gradient vectors at similar diagnostic performance as a standard DTI but providing a substantial scan time reduction.</jats:p> </jats:sec><jats:sec> <jats:title>Key points</jats:title> <jats:p>• In peripheral nerves, DTI parameters can be approximated using only three gradient vectors.</jats:p> <jats:p>• The simplified model achieves a similar diagnostic performance as a standard DTI.</jats:p> <jats:p>• The simplified model allows for a significant acceleration of image acquisition.</jats:p> <jats:p>• This can help to introduce multi-b-value DTI techniques into clinical practice.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Healthy volunteers
lokal Original Article
lokal Diabetes Mellitus, Type 2 [MeSH]
lokal Humans [MeSH]
lokal Diffusion Magnetic Resonance Imaging [MeSH]
lokal Diffusion Tensor Imaging/methods [MeSH]
lokal Magnetic resonance imaging
lokal Anisotropy [MeSH]
lokal Diabetes mellitus (type 2)
lokal Diffusion tensor imaging
lokal Peripheral Nerves/diagnostic imaging [MeSH]
lokal Peripheral nerves
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Rm9lc2xlaXRuZXIsIE9saXZpYQ==|https://frl.publisso.de/adhoc/uri/U3VsYWosIEFsYmE=|https://frl.publisso.de/adhoc/uri/U3R1cm0sIFZvbGtlcg==|https://frl.publisso.de/adhoc/uri/S3JvbmxhZ2UsIE1vcml0eg==|https://frl.publisso.de/adhoc/uri/UHJlaXNuZXIsIEZhYmlhbg==|https://frl.publisso.de/adhoc/uri/S2VuZGVyLCBab2x0YW4=|https://frl.publisso.de/adhoc/uri/QmVuZHN6dXMsIE1hcnRpbg==|https://frl.publisso.de/adhoc/uri/U3plbmRyb2VkaSwgSnVsaWE=|https://frl.publisso.de/adhoc/uri/SGVpbGFuZCwgU2FiaW5l|https://orcid.org/0000-0002-9017-8245
1000 Hinweis
  • DeepGreen-ID: 6aa17d5b42024d7dac02a15a8166224d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Universitätsklinikum Heidelberg |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Heidelberg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519355.rdf
1000 Erstellt am 2025-07-05T17:22:00.122+0200
1000 Erstellt von 322
1000 beschreibt frl:6519355
1000 Zuletzt bearbeitet 2025-08-11T11:57:05.423+0200
1000 Objekt bearb. Mon Aug 11 11:57:05 CEST 2025
1000 Vgl. frl:6519355
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519355 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source