Download
12903_2024_Article_4129.pdf 4,08MB
WeightNameValue
1000 Titel
  • Combining public datasets for automated tooth assessment in panoramic radiographs
1000 Autor/in
  1. van Nistelrooij, Niels |
  2. Ghoul, Khalid El |
  3. Xi, Tong |
  4. Saha, Anindo |
  5. Kempers, Steven |
  6. Cenci, Max |
  7. Loomans, Bas |
  8. Flügge, Tabea |
  9. van Ginneken, Bram |
  10. Vinayahalingam, Shankeeth |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-26
1000 Erschienen in
1000 Quellenangabe
  • 24(1):387
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12903-024-04129-5 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964594/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Objective</jats:title> <jats:p>Panoramic radiographs (PRs) provide a comprehensive view of the oral and maxillofacial region and are used routinely to assess dental and osseous pathologies. Artificial intelligence (AI) can be used to improve the diagnostic accuracy of PRs compared to bitewings and periapical radiographs. This study aimed to evaluate the advantages and challenges of using publicly available datasets in dental AI research, focusing on solving the novel task of predicting tooth segmentations, FDI numbers, and tooth diagnoses, simultaneously.</jats:p> </jats:sec><jats:sec> <jats:title>Materials and methods</jats:title> <jats:p>Datasets from the OdontoAI platform (tooth instance segmentations) and the DENTEX challenge (tooth bounding boxes with associated diagnoses) were combined to develop a two-stage AI model. The first stage implemented tooth instance segmentation with FDI numbering and extracted regions of interest around each tooth segmentation, whereafter the second stage implemented multi-label classification to detect dental caries, impacted teeth, and periapical lesions in PRs. The performance of the automated tooth segmentation algorithm was evaluated using a free-response receiver-operating-characteristics (FROC) curve and mean average precision (mAP) metrics. The diagnostic accuracy of detection and classification of dental pathology was evaluated with ROC curves and F1 and AUC metrics.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The two-stage AI model achieved high accuracy in tooth segmentations with a FROC score of 0.988 and a mAP of 0.848. High accuracy was also achieved in the diagnostic classification of impacted teeth (F1 = 0.901, AUC = 0.996), whereas moderate accuracy was achieved in the diagnostic classification of deep caries (F1 = 0.683, AUC = 0.960), early caries (F1 = 0.662, AUC = 0.881), and periapical lesions (F1 = 0.603, AUC = 0.974). The model’s performance correlated positively with the quality of annotations in the used public datasets. Selected samples from the DENTEX dataset revealed cases of missing (false-negative) and incorrect (false-positive) diagnoses, which negatively influenced the performance of the AI model.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The use and pooling of public datasets in dental AI research can significantly accelerate the development of new AI models and enable fast exploration of novel tasks. However, standardized quality assurance is essential before using the datasets to ensure reliable outcomes and limit potential biases.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Bone and Bones [MeSH]
lokal Dental Caries [MeSH]
lokal Humans [MeSH]
lokal Tooth, Impacted [MeSH]
lokal Artificial intelligence
lokal Artificial Intelligence [MeSH]
lokal Public datasets
lokal Tooth [MeSH]
lokal Research
lokal Panoramic radiograph
lokal Diagnostic classification
lokal Radiography, Panoramic [MeSH]
lokal Tooth segmentation
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/dmFuIE5pc3RlbHJvb2lqLCBOaWVscw==|https://frl.publisso.de/adhoc/uri/R2hvdWwsIEtoYWxpZCBFbA==|https://frl.publisso.de/adhoc/uri/WGksIFRvbmc=|https://frl.publisso.de/adhoc/uri/U2FoYSwgQW5pbmRv|https://frl.publisso.de/adhoc/uri/S2VtcGVycywgU3RldmVu|https://frl.publisso.de/adhoc/uri/Q2VuY2ksIE1heA==|https://frl.publisso.de/adhoc/uri/TG9vbWFucywgQmFz|https://frl.publisso.de/adhoc/uri/RmzDvGdnZSwgVGFiZWE=|https://frl.publisso.de/adhoc/uri/dmFuIEdpbm5la2VuLCBCcmFt|https://frl.publisso.de/adhoc/uri/VmluYXlhaGFsaW5nYW0sIFNoYW5rZWV0aA==
1000 Hinweis
  • DeepGreen-ID: 224da594159e4c499c7374cd380d940d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Charité – Universitätsmedizin Berlin |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Charité – Universitätsmedizin Berlin |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519487.rdf
1000 Erstellt am 2025-07-05T18:14:10.294+0200
1000 Erstellt von 322
1000 beschreibt frl:6519487
1000 Zuletzt bearbeitet 2025-08-11T11:50:48.993+0200
1000 Objekt bearb. Mon Aug 11 11:50:48 CEST 2025
1000 Vgl. frl:6519487
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519487 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source