Download
10198_2023_Article_1650.pdf 1,01MB
WeightNameValue
1000 Titel
  • The elicitation of patient and physician preferences for calculating consumer-based composite measures on hospital report cards: results of two discrete choice experiments
1000 Autor/in
  1. Emmert, Martin |
  2. Rohrbacher, Stefan |
  3. Meier, Florian |
  4. Heppe, Laura |
  5. Drach, Cordula |
  6. Schindler, Anja |
  7. Sander, Uwe |
  8. Patzelt, Christiane |
  9. Frömke, Cornelia |
  10. Schöffski, Oliver |
  11. Lauerer, Michael |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-15
1000 Erschienen in
1000 Quellenangabe
  • 25(6):1071-1085
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10198-023-01650-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283427/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>The calculation of aggregated composite measures is a widely used strategy to reduce the amount of data on hospital report cards. Therefore, this study aims to elicit and compare preferences of both patients as well as referring physicians regarding publicly available hospital quality information</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Based on systematic literature reviews as well as qualitative analysis, two discrete choice experiments (DCEs) were applied to elicit patients’ and referring physicians’ preferences. The DCEs were conducted using a fractional factorial design. Statistical data analysis was performed using multinomial logit models</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Apart from five identical attributes, one specific attribute was identified for each study group, respectively. Overall, 322 patients (mean age 68.99) and 187 referring physicians (mean age 53.60) were included. Our models displayed significant coefficients for all attributes (<jats:italic>p</jats:italic> &lt; 0.001 each). Among patients, “Postoperative complication rate” (20.6%; level range of 1.164) was rated highest, followed by “Mobility at hospital discharge” (19.9%; level range of 1.127), and ‘‘The number of cases treated” (18.5%; level range of 1.045). In contrast, referring physicians valued most the ‘‘One-year revision surgery rate’’ (30.4%; level range of 1.989), followed by “The number of cases treated” (21.0%; level range of 1.372), and “Postoperative complication rate” (17.2%; level range of 1.123)</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>We determined considerable differences between both study groups when calculating the relative value of publicly available hospital quality information. This may have an impact when calculating aggregated composite measures based on consumer-based weighting.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Female [MeSH]
lokal Hospital choice
lokal Composite measures
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Hospital report cards
lokal I12
lokal Middle Aged [MeSH]
lokal Choice Behavior [MeSH]
lokal Hospitals [MeSH]
lokal Quality Indicators, Health Care [MeSH]
lokal Physicians/psychology [MeSH]
lokal Male [MeSH]
lokal Patient Preference [MeSH]
lokal Original Paper
lokal Discrete choice experiment
lokal Public reporting
lokal Physicians/statistics
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-0154-6641|https://frl.publisso.de/adhoc/uri/Um9ocmJhY2hlciwgU3RlZmFu|https://frl.publisso.de/adhoc/uri/TWVpZXIsIEZsb3JpYW4=|https://frl.publisso.de/adhoc/uri/SGVwcGUsIExhdXJh|https://frl.publisso.de/adhoc/uri/RHJhY2gsIENvcmR1bGE=|https://frl.publisso.de/adhoc/uri/U2NoaW5kbGVyLCBBbmph|https://frl.publisso.de/adhoc/uri/U2FuZGVyLCBVd2U=|https://frl.publisso.de/adhoc/uri/UGF0emVsdCwgQ2hyaXN0aWFuZQ==|https://frl.publisso.de/adhoc/uri/RnLDtm1rZSwgQ29ybmVsaWE=|https://frl.publisso.de/adhoc/uri/U2Now7ZmZnNraSwgT2xpdmVy|https://frl.publisso.de/adhoc/uri/TGF1ZXJlciwgTWljaGFlbA==
1000 Hinweis
  • DeepGreen-ID: 1f19dfa36a1641ae9a59507790268183 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. The German health care Innovation Fund |
  2. Universität Bayreuth |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer The German health care Innovation Fund |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universität Bayreuth |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519547.rdf
1000 Erstellt am 2025-07-05T18:38:52.774+0200
1000 Erstellt von 322
1000 beschreibt frl:6519547
1000 Zuletzt bearbeitet 2025-08-14T08:06:08.809+0200
1000 Objekt bearb. Thu Aug 14 08:06:08 CEST 2025
1000 Vgl. frl:6519547
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519547 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source