Download
10334_2023_Article_1134.pdf 4,78MB
WeightNameValue
1000 Titel
  • FastPtx: a versatile toolbox for rapid, joint design of pTx RF and gradient pulses using Pytorch’s autodifferentiation
1000 Autor/in
  1. Bosch, Dario |
  2. Scheffler, Klaus |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-08
1000 Erschienen in
1000 Quellenangabe
  • 37(1):127-138
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10334-023-01134-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876762/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Objective</jats:title> <jats:p>With modern optimization methods, free optimization of parallel transmit pulses together with their gradient waveforms can be performed on-line within a short time. A toolbox which uses PyTorch’s autodifferentiation for simultaneous optimization of RF and gradient waveforms is presented and its performance is evaluated.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>MR measurements were performed on a 9.4T MRI scanner using a 3D saturated single-shot turboFlash sequence for <jats:inline-formula><jats:alternatives><jats:tex-math>$$B_1^+$$</jats:tex-math><mml:math xmlns:mml='http://www.w3.org/1998/Math/MathML'> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> </mml:msubsup> </mml:math></jats:alternatives></jats:inline-formula> mapping. RF pulse simulation and optimization were done using a Python toolbox and a dedicated server. An RF- and Gradient pulse design toolbox was developed, including a cost function to balance different metrics and respect hardware and regulatory limits. Pulse performance was evaluated in GRE and MPRAGE imaging. Pulses for non-selective and for slab-selective excitation were designed.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Universal pulses for non-selective excitation reduced the flip angle error to an NRMSE of (12.3±1.7)% relative to the targeted flip angle in simulations, compared to (42.0±1.4)% in CP mode. The tailored pulses performed best, resulting in a narrow flip angle distribution with NRMSE of (8.2±1.0)%. The tailored pulses could be created in only 66 s, making it feasible to design them during an experiment. A 90° pulse was designed as preparation pulse for a satTFL sequence and achieved a NRMSE of 7.1%. We showed that both MPRAGE and GRE imaging benefited from the pTx pulses created with our toolbox.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>The pTx pulse design toolbox can freely optimize gradient and pTx RF waveforms in a short time. This allows for tailoring high-quality pulses in just over a minute.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Algorithms [MeSH]
lokal MRI pulse design
lokal Algorithms
lokal Parallel transmission
lokal Phantoms, Imaging [MeSH]
lokal Magnetic resonance imaging
lokal Magnetic Resonance Imaging/methods [MeSH]
lokal Computer Simulation [MeSH]
lokal Brain [MeSH]
lokal Research Article
lokal Basic Science - Pulse sequences and acquisition techniques
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-6537-6370|https://frl.publisso.de/adhoc/uri/U2NoZWZmbGVyLCBLbGF1cw==
1000 Hinweis
  • DeepGreen-ID: 59d74fc3901645e39ae77cf67475bccd ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. H2020 European Research Council |
  3. Max Planck Institute for Biological Cybernetics |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer H2020 European Research Council |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Max Planck Institute for Biological Cybernetics |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519803.rdf
1000 Erstellt am 2025-07-05T20:32:59.880+0200
1000 Erstellt von 322
1000 beschreibt frl:6519803
1000 Zuletzt bearbeitet 2025-08-08T13:40:48.526+0200
1000 Objekt bearb. Fri Aug 08 13:40:48 CEST 2025
1000 Vgl. frl:6519803
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519803 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source