Download
41380_2024_Article_2719.pdf 3,22MB
WeightNameValue
1000 Titel
  • A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder
1000 Autor/in
  1. Friske, Marion |
  2. Torrico, Eva C. |
  3. Haas, Maximilian J. W. |
  4. Borruto, Anna Maria |
  5. Giannone, Francesco |
  6. Hade, Andreas-Christian |
  7. Yu, Yun |
  8. Gao, Lina |
  9. Sutherland, Greg |
  10. Hitzemann, Robert |
  11. Philips, Mari-Anne |
  12. Fei, Suzanne |
  13. Sommer, Wolfgang |
  14. Mayfield, R. Dayne |
  15. Spanagel, Rainer |
1000 Verlag Nature Publishing Group UK
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-06
1000 Erschienen in
1000 Quellenangabe
  • 30(1):310-326
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41380-024-02719-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649567/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Currently available clinical treatments on alcohol use disorder (AUD) exhibit limited efficacy and new druggable targets are required. One promising approach to discover new molecular treatment targets involves the transcriptomic profiling of brain regions within the addiction neurocircuitry, utilizing animal models and postmortem brain tissue from deceased patients with AUD. Unfortunately, such studies suffer from large heterogeneity and small sample sizes. To address these limitations, we conducted a cross-species meta-analysis on transcriptome-wide data obtained from brain tissue of patients with AUD and animal models. We integrated 36 cross-species transcriptome-wide RNA-expression datasets with an alcohol-dependent phenotype vs. controls, following the PRISMA guidelines. In total, we meta-analyzed 964 samples - 502 samples from the prefrontal cortex (PFC), 282 nucleus accumbens (NAc) samples, and 180 from amygdala (AMY). The PFC had the highest number of differentially expressed genes (DEGs) across rodents, monkeys, and humans. Commonly dysregulated DEGs suggest conserved cross-species mechanisms for chronic alcohol consumption/AUD comprising MAPKs as well as STAT, IRF7, and TNF. Furthermore, we identified numerous unique gene sets that might contribute individually to these conserved mechanisms and also suggest novel molecular aspects of AUD. Validation of the transcriptomic alterations on the protein level revealed interesting targets for further investigation. Finally, we identified a combination of DEGs that are commonly regulated across different brain tissues as potential biomarkers for AUD. In summary, we provide a compendium of genes that are assessable via a shiny app, and describe signaling pathways, and physiological and cellular processes that are altered in AUD that require future studies for functional validation.
1000 Sacherschließung
lokal Systematic Review
lokal Prefrontal Cortex/metabolism [MeSH]
lokal Alcoholism/genetics [MeSH]
lokal Nucleus Accumbens/metabolism [MeSH]
lokal Transcriptome/genetics [MeSH]
lokal Humans [MeSH]
lokal systematic-review
lokal /631/337
lokal Animals [MeSH]
lokal Amygdala/metabolism [MeSH]
lokal Alcoholism/metabolism [MeSH]
lokal /38/39
lokal Brain/metabolism [MeSH]
lokal Gene Expression Profiling/methods [MeSH]
lokal /38
lokal Disease Models, Animal [MeSH]
lokal /631/378
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3334-2555|https://frl.publisso.de/adhoc/uri/VG9ycmljbywgRXZhIEMu|https://frl.publisso.de/adhoc/uri/SGFhcywgTWF4aW1pbGlhbiBKLiBXLg==|https://orcid.org/0000-0002-0953-8865|https://orcid.org/0000-0002-0364-7374|https://frl.publisso.de/adhoc/uri/SGFkZSwgQW5kcmVhcy1DaHJpc3RpYW4=|https://frl.publisso.de/adhoc/uri/WXUsIFl1bg==|https://frl.publisso.de/adhoc/uri/R2FvLCBMaW5h|https://orcid.org/0000-0003-2493-9736|https://frl.publisso.de/adhoc/uri/SGl0emVtYW5uLCBSb2JlcnQ=|https://frl.publisso.de/adhoc/uri/UGhpbGlwcywgTWFyaS1Bbm5l|https://orcid.org/0000-0002-9688-2890|https://orcid.org/0000-0002-5903-6521|https://orcid.org/0000-0002-8045-1789|https://orcid.org/0000-0003-2151-4521
1000 Hinweis
  • DeepGreen-ID: 356c70613f1d421aae31d340268b9282 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ; at least one of the mandatory fields 'given-names' and 'family-name' is missing for the ORCID profile of 'Torrico, Eva C.' (https://orcid.org/0000-0003-3656-1419)
1000 Label
1000 Förderer
  1. Clinical Center |
  2. National Institute on Alcohol Abuse and Alcoholism |
  3. U.S. Department of Health |
  4. U.S. Department of Health |
  5. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
  5. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Clinical Center |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer National Institute on Alcohol Abuse and Alcoholism |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer U.S. Department of Health |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer U.S. Department of Health |
    1000 Förderprogramm -
    1000 Fördernummer -
  5. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6520005.rdf
1000 Erstellt am 2025-07-05T21:58:37.105+0200
1000 Erstellt von 322
1000 beschreibt frl:6520005
1000 Zuletzt bearbeitet 2025-08-08T09:13:20.111+0200
1000 Objekt bearb. Fri Aug 08 09:13:20 CEST 2025
1000 Vgl. frl:6520005
1000 Oai Id
  1. oai:frl.publisso.de:frl:6520005 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source