Download
12933_2024_Article_2245.pdf 2,48MB
WeightNameValue
1000 Titel
  • Pre-hospital glycemia as a biomarker for in-hospital all-cause mortality in diabetic patients - a pilot study
1000 Autor/in
  1. Greco, Salvatore |
  2. Salatiello, Alessandro |
  3. De Motoli, Francesco |
  4. Giovine, Antonio |
  5. Veronese, Martina |
  6. Cupido, Maria Grazia |
  7. Pedarzani, Emma |
  8. Valpiani, Giorgia |
  9. Passaro, Angelina |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-03
1000 Erschienen in
1000 Quellenangabe
  • 23(1):153
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12933-024-02245-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069282/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Type 2 Diabetes Mellitus (T2DM) presents a significant healthcare challenge, with considerable economic ramifications. While blood glucose management and long-term metabolic target setting for home care and outpatient treatment follow established procedures, the approach for short-term targets during hospitalization varies due to a lack of clinical consensus. Our study aims to elucidate the impact of pre-hospitalization and intra-hospitalization glycemic indexes on in-hospital survival rates in individuals with T2DM, addressing this notable gap in the current literature.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>In this pilot study involving 120 hospitalized diabetic patients, we used advanced machine learning and classical statistical methods to identify variables for predicting hospitalization outcomes. We first developed a 30-day mortality risk classifier leveraging AdaBoost-FAS, a state-of-the-art ensemble machine learning method for tabular data. We then analyzed the feature relevance to identify the key predictive variables among the glycemic and routine clinical variables the model bases its predictions on. Next, we conducted detailed statistical analyses to shed light on the relationship between such variables and mortality risk. Finally, based on such analyses, we introduced a novel index, the ratio of intra-hospital glycemic variability to pre-hospitalization glycemic mean, to better characterize and stratify the diabetic population.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Our findings underscore the importance of personalized approaches to glycemic management during hospitalization. The introduced index, alongside advanced predictive modeling, provides valuable insights for optimizing patient care. In particular, together with in-hospital glycemic variability, it is able to discriminate between patients with higher and lower mortality rates, highlighting the importance of tightly controlling not only pre-hospital but also in-hospital glycemic levels.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Despite the pilot nature and modest sample size, this study marks the beginning of exploration into personalized glycemic control for hospitalized patients with T2DM. Pre-hospital blood glucose levels and related variables derived from it can serve as biomarkers for all-cause mortality during hospitalization.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Glycemic Control/mortality [MeSH]
lokal Aged [MeSH]
lokal Hospitalization [MeSH]
lokal Risk Assessment [MeSH]
lokal Type 2 diabetes mellitus
lokal Glycemic variability
lokal Risk Factors [MeSH]
lokal Diabetes Mellitus, Type 2/mortality [MeSH]
lokal Hospital Mortality [MeSH]
lokal Cause of Death [MeSH]
lokal Male [MeSH]
lokal Machine Learning [MeSH]
lokal AdaBoost-FAS
lokal Diabetes Mellitus, Type 2/diagnosis [MeSH]
lokal Female [MeSH]
lokal Machine learning
lokal Glucose metabolism disorder
lokal Biomarkers/blood [MeSH]
lokal Humans [MeSH]
lokal Predictive Value of Tests [MeSH]
lokal Middle Aged [MeSH]
lokal Diabetes Mellitus, Type 2/blood [MeSH]
lokal Time Factors [MeSH]
lokal Research
lokal Pilot Projects [MeSH]
lokal Prognosis [MeSH]
lokal Blood Glucose/metabolism [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/R3JlY28sIFNhbHZhdG9yZQ==|https://frl.publisso.de/adhoc/uri/U2FsYXRpZWxsbywgQWxlc3NhbmRybw==|https://frl.publisso.de/adhoc/uri/RGUgTW90b2xpLCBGcmFuY2VzY28=|https://frl.publisso.de/adhoc/uri/R2lvdmluZSwgQW50b25pbw==|https://frl.publisso.de/adhoc/uri/VmVyb25lc2UsIE1hcnRpbmE=|https://frl.publisso.de/adhoc/uri/Q3VwaWRvLCBNYXJpYSBHcmF6aWE=|https://frl.publisso.de/adhoc/uri/UGVkYXJ6YW5pLCBFbW1h|https://frl.publisso.de/adhoc/uri/VmFscGlhbmksIEdpb3JnaWE=|https://orcid.org/0000-0001-8462-7000
1000 Hinweis
  • DeepGreen-ID: bd19ca4219c641dab477ec82984890c7 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6520247.rdf
1000 Erstellt am 2025-07-05T23:37:18.966+0200
1000 Erstellt von 322
1000 beschreibt frl:6520247
1000 Zuletzt bearbeitet 2025-08-11T08:11:32.166+0200
1000 Objekt bearb. Mon Aug 11 08:11:32 CEST 2025
1000 Vgl. frl:6520247
1000 Oai Id
  1. oai:frl.publisso.de:frl:6520247 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source