Download
11548_2024_Article_3085.pdf 2,25MB
WeightNameValue
1000 Titel
  • Test-time augmentation with synthetic data addresses distribution shifts in spectral imaging
1000 Autor/in
  1. Qasim, Ahmad Bin |
  2. Motta, Alessandro |
  3. Studier-Fischer, Alexander |
  4. Sellner, Jan |
  5. Ayala, Leonardo |
  6. Hübner, Marco |
  7. Bressan, Marc |
  8. Özdemir, Berkin |
  9. Kowalewski, Karl Friedrich |
  10. Nickel, Felix |
  11. Seidlitz, Silvia |
  12. Maier-Hein, Lena |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-14
1000 Erschienen in
1000 Quellenangabe
  • 19(6):1021-1031
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03085-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178652/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Surgical scene segmentation is crucial for providing context-aware surgical assistance. Recent studies highlight the significant advantages of hyperspectral imaging (HSI) over traditional RGB data in enhancing segmentation performance. Nevertheless, the current hyperspectral imaging (HSI) datasets remain limited and do not capture the full range of tissue variations encountered clinically.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Based on a total of 615 hyperspectral images from a total of 16 pigs, featuring porcine organs in different perfusion states, we carry out an exploration of distribution shifts in spectral imaging caused by perfusion alterations. We further introduce a novel strategy to mitigate such distribution shifts, utilizing synthetic data for test-time augmentation.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The effect of perfusion changes on state-of-the-art (SOA) segmentation networks depended on the organ and the specific perfusion alteration induced. In the case of the kidney, we observed a performance decline of up to 93% when applying a state-of-the-art (SOA) network under ischemic conditions. Our method improved on the state-of-the-art (SOA) by up to 4.6 times.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Given its potential wide-ranging relevance to diverse pathologies, our approach may serve as a pivotal tool to enhance neural network generalization within the realm of spectral imaging.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Original Article
lokal Test-time augmentation
lokal Swine [MeSH]
lokal Surgical scene segmentation
lokal Hyperspectral Imaging/methods [MeSH]
lokal Hyperspectral imaging
lokal Tissue classification
lokal Domain generalization
lokal Deep learning
lokal Animals [MeSH]
lokal Kidney/diagnostic imaging [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-6502-8851|https://frl.publisso.de/adhoc/uri/TW90dGEsIEFsZXNzYW5kcm8=|https://frl.publisso.de/adhoc/uri/U3R1ZGllci1GaXNjaGVyLCBBbGV4YW5kZXI=|https://frl.publisso.de/adhoc/uri/U2VsbG5lciwgSmFu|https://frl.publisso.de/adhoc/uri/QXlhbGEsIExlb25hcmRv|https://frl.publisso.de/adhoc/uri/SMO8Ym5lciwgTWFyY28=|https://frl.publisso.de/adhoc/uri/QnJlc3NhbiwgTWFyYw==|https://frl.publisso.de/adhoc/uri/w5Z6ZGVtaXIsIEJlcmtpbg==|https://frl.publisso.de/adhoc/uri/S293YWxld3NraSwgS2FybCBGcmllZHJpY2g=|https://frl.publisso.de/adhoc/uri/Tmlja2VsLCBGZWxpeA==|https://frl.publisso.de/adhoc/uri/U2VpZGxpdHosIFNpbHZpYQ==|https://frl.publisso.de/adhoc/uri/TWFpZXItSGVpbiwgTGVuYQ==
1000 Hinweis
  • DeepGreen-ID: 0c359f7bdeea40d5b055590a8794989e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ;
1000 Label
1000 Förderer
  1. HORIZON EUROPE European Innovation Council |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer HORIZON EUROPE European Innovation Council |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6521133.rdf
1000 Erstellt am 2025-07-06T05:46:12.946+0200
1000 Erstellt von 322
1000 beschreibt frl:6521133
1000 Zuletzt bearbeitet 2025-08-04T09:43:51.843+0200
1000 Objekt bearb. Mon Aug 04 09:43:51 CEST 2025
1000 Vgl. frl:6521133
1000 Oai Id
  1. oai:frl.publisso.de:frl:6521133 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source