Download
41747_2024_Article_457.pdf 2,05MB
WeightNameValue
1000 Titel
  • A retrieval-augmented chatbot based on GPT-4 provides appropriate differential diagnosis in gastrointestinal radiology: a proof of concept study
1000 Autor/in
  1. Rau, Stephan |
  2. Rau, Alexander |
  3. Nattenmüller, Johanna |
  4. Fink, Anna |
  5. Bamberg, Fabian |
  6. Reisert, Marco |
  7. Russe, Maximilian F. |
1000 Verlag Springer Vienna
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-17
1000 Erschienen in
1000 Quellenangabe
  • 8(1):60
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s41747-024-00457-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098977/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>We investigated the potential of an imaging-aware GPT-4-based chatbot in providing diagnoses based on imaging descriptions of abdominal pathologies.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Utilizing zero-shot learning via the LlamaIndex framework, GPT-4 was enhanced using the 96 documents from the Radiographics Top 10 Reading List on gastrointestinal imaging, creating a gastrointestinal imaging-aware chatbot (GIA-CB). To assess its diagnostic capability, 50 cases on a variety of abdominal pathologies were created, comprising radiological findings in fluoroscopy, MRI, and CT. We compared the GIA-CB to the generic GPT-4 chatbot (g-CB) in providing the primary and 2 additional differential diagnoses, using interpretations from senior-level radiologists as ground truth. The trustworthiness of the GIA-CB was evaluated by investigating the source documents as provided by the knowledge-retrieval mechanism. Mann–Whitney <jats:italic>U</jats:italic> test was employed.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The GIA-CB demonstrated a high capability to identify the most appropriate differential diagnosis in 39/50 cases (78%), significantly surpassing the g-CB in 27/50 cases (54%) (<jats:italic>p</jats:italic> = 0.006). Notably, the GIA-CB offered the primary differential in the top 3 differential diagnoses in 45/50 cases (90%) <jats:italic>versus</jats:italic> g-CB with 37/50 cases (74%) (<jats:italic>p</jats:italic> = 0.022) and always with appropriate explanations. The median response time was 29.8 s for GIA-CB and 15.7 s for g-CB, and the mean cost per case was $0.15 and $0.02, respectively.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The GIA-CB not only provided an accurate diagnosis for gastrointestinal pathologies, but also direct access to source documents, providing insight into the decision-making process, a step towards trustworthy and explainable AI. Integrating context-specific data into AI models can support evidence-based clinical decision-making.</jats:p> </jats:sec><jats:sec> <jats:title>Relevance statement</jats:title> <jats:p>A context-aware GPT-4 chatbot demonstrates high accuracy in providing differential diagnoses based on imaging descriptions, surpassing the generic GPT-4. It provided formulated rationale and source excerpts supporting the diagnoses, thus enhancing trustworthy decision-support.</jats:p> </jats:sec><jats:sec> <jats:title>Key points</jats:title> <jats:p>• Knowledge retrieval enhances differential diagnoses in a gastrointestinal imaging-aware chatbot (GIA-CB).</jats:p> <jats:p>• GIA-CB outperformed the generic counterpart, providing formulated rationale and source excerpts.</jats:p> <jats:p>• GIA-CB has the potential to pave the way for AI-assisted decision support systems.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Original Article
lokal Gastrointestinal diseases
lokal Humans [MeSH]
lokal Artificial intelligence
lokal Knowledge acquisition (computer)
lokal Gastrointestinal Diseases/diagnostic imaging [MeSH]
lokal Diagnosis (differential)
lokal Diagnosis, Differential [MeSH]
lokal Proof of Concept Study [MeSH]
lokal Artificial Intelligence [MeSH]
lokal Zero-shot learning
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8992-2401|https://frl.publisso.de/adhoc/uri/UmF1LCBBbGV4YW5kZXI=|https://frl.publisso.de/adhoc/uri/TmF0dGVubcO8bGxlciwgSm9oYW5uYQ==|https://frl.publisso.de/adhoc/uri/RmluaywgQW5uYQ==|https://frl.publisso.de/adhoc/uri/QmFtYmVyZywgRmFiaWFu|https://frl.publisso.de/adhoc/uri/UmVpc2VydCwgTWFyY28=|https://frl.publisso.de/adhoc/uri/UnVzc2UsIE1heGltaWxpYW4gRi4=
1000 Hinweis
  • DeepGreen-ID: 58dc8d672a974b65bfff7115e1885f4d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ;
1000 Label
1000 Förderer
  1. Universitätsklinikum Freiburg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Freiburg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6521399.rdf
1000 Erstellt am 2025-07-06T07:39:48.656+0200
1000 Erstellt von 322
1000 beschreibt frl:6521399
1000 Zuletzt bearbeitet 2025-08-04T08:02:47.020+0200
1000 Objekt bearb. Mon Aug 04 08:02:47 CEST 2025
1000 Vgl. frl:6521399
1000 Oai Id
  1. oai:frl.publisso.de:frl:6521399 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source