Download
40635_2024_Article_639.pdf 1,66MB
WeightNameValue
1000 Titel
  • Explainable Boosting Machine approach identifies risk factors for acute renal failure
1000 Autor/in
  1. Körner, Andreas |
  2. Sailer, Benjamin |
  3. Sari-Yavuz, Sibel |
  4. Haeberle, Helene A. |
  5. Mirakaj, Valbona |
  6. Bernard, Alice |
  7. Rosenberger, Peter |
  8. Koeppen, Michael |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-14
1000 Erschienen in
1000 Quellenangabe
  • 12(1):55
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40635-024-00639-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178719/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Risk stratification and outcome prediction are crucial for intensive care resource planning. In addressing the large data sets of intensive care unit (ICU) patients, we employed the Explainable Boosting Machine (EBM), a novel machine learning model, to identify determinants of acute kidney injury (AKI) in these patients. AKI significantly impacts outcomes in the critically ill.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>An analysis of 3572 ICU patients was conducted. Variables such as average central venous pressure (CVP), mean arterial pressure (MAP), age, gender, and comorbidities were examined. This analysis combined traditional statistical methods with the EBM to gain a detailed understanding of AKI risk factors.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Our analysis revealed chronic kidney disease, heart failure, arrhythmias, liver disease, and anemia as significant comorbidities influencing AKI risk, with liver disease and anemia being particularly impactful. Surgical factors were also key; lower GI surgery heightened AKI risk, while neurosurgery was associated with a reduced risk. EBM identified four crucial variables affecting AKI prediction: anemia, liver disease, and average CVP increased AKI risk, whereas neurosurgery decreased it. Age was a progressive risk factor, with risk escalating after the age of 50 years. Hemodynamic instability, marked by a MAP below 65 mmHg, was strongly linked to AKI, showcasing a threshold effect at 60 mmHg. Intriguingly, average CVP was a significant predictor, with a critical threshold at 10.7 mmHg.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Using an Explainable Boosting Machine enhance the precision in AKI risk factors in ICU patients, providing a more nuanced understanding of known AKI risks. This approach allows for refined predictive modeling of AKI, effectively overcoming the limitations of traditional statistical models.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Research Articles
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S8O2cm5lciwgQW5kcmVhcw==|https://frl.publisso.de/adhoc/uri/U2FpbGVyLCBCZW5qYW1pbg==|https://frl.publisso.de/adhoc/uri/U2FyaS1ZYXZ1eiwgU2liZWw=|https://frl.publisso.de/adhoc/uri/SGFlYmVybGUsIEhlbGVuZSBBLg==|https://frl.publisso.de/adhoc/uri/TWlyYWthaiwgVmFsYm9uYQ==|https://frl.publisso.de/adhoc/uri/QmVybmFyZCwgQWxpY2U=|https://frl.publisso.de/adhoc/uri/Um9zZW5iZXJnZXIsIFBldGVy|https://orcid.org/0000-0002-5002-1286
1000 Hinweis
  • DeepGreen-ID: 47c04f40de1341f48ab2214fdebaecd6 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ;
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Bundesministerium für Bildung und Forschung |
  3. Universitätsklinikum Tübingen |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Tübingen |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6521609.rdf
1000 Erstellt am 2025-07-06T09:07:42.933+0200
1000 Erstellt von 322
1000 beschreibt frl:6521609
1000 Zuletzt bearbeitet 2025-08-04T08:54:05.855+0200
1000 Objekt bearb. Mon Aug 04 08:54:05 CEST 2025
1000 Vgl. frl:6521609
1000 Oai Id
  1. oai:frl.publisso.de:frl:6521609 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source