Download
00784_2024_Article_5900.pdf 2,10MB
WeightNameValue
1000 Titel
  • Lateral cephalometric parameters among Arab skeletal classes II and III patients and applying machine learning models
1000 Autor/in
  1. Midlej, Kareem |
  2. Watted, Nezar |
  3. Awadi, Obaida |
  4. Masarwa, Samir |
  5. Lone, Iqbal M. |
  6. Zohud, Osayd |
  7. Paddenberg, Eva |
  8. Krohn, Sebastian |
  9. Kuchler, Erika |
  10. Proff, Peter |
  11. Iraqi, Fuad A. |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-03
1000 Erschienen in
1000 Quellenangabe
  • 28(9):511
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00784-024-05900-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369042/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The World Health Organization considers malocclusion one of the most essential oral health problems. This disease influences various aspects of patients’ health and well-being. Therefore, making it easier and more accurate to understand and diagnose patients with skeletal malocclusions is necessary.</jats:p> </jats:sec><jats:sec> <jats:title>Objectives</jats:title> <jats:p>The main aim of this research was the establishment of machine learning models to correctly classify individual Arab patients, being citizens of Israel, as skeletal class II or III. Secondary outcomes of the study included comparing cephalometric parameters between patients with skeletal class II and III and between age and gender-specific subgroups, an analysis of the correlation of various cephalometric variables, and principal component analysis in skeletal class diagnosis.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>This quantitative, observational study is based on data from the Orthodontic Center, Jatt, Israel. The experimental data consisted of the coded records of 502 Arab patients diagnosed as Class II or III according to the Calculated_ANB. This parameter was defined as the difference between the measured ANB angle and the individualized ANB of Panagiotidis and Witt. In this observational study, we focused on the primary aim, i.e., the establishment of machine learning models for the correct classification of skeletal class II and III in a group of Arab orthodontic patients. For this purpose, various ML models and input data was tested after identifying the most relevant parameters by conducting a principal component analysis. As secondary outcomes this study compared the cephalometric parameters and analyzed their correlations between skeletal class II and III as well as between gender and age specific subgroups.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Comparison of the two groups demonstrated significant differences between skeletal class II and class III patients. This was shown for the parameters NL-NSL angle, PFH/AFH ratio, SNA angle, SNB angle, SN-Ba angle. SN-Pg angle, and ML-NSL angle in skeletal class III patients, and for S-N (mm) in skeletal class II patients. In skeletal class II and skeletal class III patients, the results showed that the Calculated_ANB correlated well with many other cephalometric parameters. With the help of the Principal Component Analysis (PCA), it was possible to explain about 71% of the variation between the first two PCs. Finally, applying the stepwise forward Machine Learning models, it could be demonstrated that the model works only with the parameters Wits appraisal and SNB angle was able to predict the allocation of patients to either skeletal class II or III with an accuracy of 0.95, compared to a value of 0.99 when all parameters were used (“general model”).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>There is a significant relationship between many cephalometric parameters within the different groups of gender and age. This study highlights the high accuracy and power of Wits appraisal and the SNB angle in evaluating the classification of orthodontic malocclusion.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Adolescent [MeSH]
lokal Female [MeSH]
lokal Class III
lokal Israel [MeSH]
lokal Cephalometry [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Malocclusion, Angle Class II/diagnostic imaging [MeSH]
lokal Malocclusion, Angle Class III/pathology [MeSH]
lokal Malocclusion
lokal Disease classification
lokal Male [MeSH]
lokal Research
lokal Malocclusion, Angle Class II/pathology [MeSH]
lokal Machine Learning [MeSH]
lokal Cephalometric parameters
lokal Arabs [MeSH]
lokal Class II
lokal Principal Component Analysis [MeSH]
lokal Child [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWlkbGVqLCBLYXJlZW0=|https://frl.publisso.de/adhoc/uri/V2F0dGVkLCBOZXphcg==|https://frl.publisso.de/adhoc/uri/QXdhZGksIE9iYWlkYQ==|https://frl.publisso.de/adhoc/uri/TWFzYXJ3YSwgU2FtaXI=|https://frl.publisso.de/adhoc/uri/TG9uZSwgSXFiYWwgTS4=|https://frl.publisso.de/adhoc/uri/Wm9odWQsIE9zYXlk|https://frl.publisso.de/adhoc/uri/UGFkZGVuYmVyZywgRXZh|https://frl.publisso.de/adhoc/uri/S3JvaG4sIFNlYmFzdGlhbg==|https://frl.publisso.de/adhoc/uri/S3VjaGxlciwgRXJpa2E=|https://frl.publisso.de/adhoc/uri/UHJvZmYsIFBldGVy|https://frl.publisso.de/adhoc/uri/SXJhcWksIEZ1YWQgQS4=
1000 Hinweis
  • DeepGreen-ID: d2d545cd97f74ba9ad650a72995c85a4 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ;
1000 Label
1000 Förderer
  1. Universität Regensburg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universität Regensburg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6521755.rdf
1000 Erstellt am 2025-07-06T10:08:24.072+0200
1000 Erstellt von 322
1000 beschreibt frl:6521755
1000 Zuletzt bearbeitet 2025-08-04T09:10:54.695+0200
1000 Objekt bearb. Mon Aug 04 09:10:54 CEST 2025
1000 Vgl. frl:6521755
1000 Oai Id
  1. oai:frl.publisso.de:frl:6521755 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source