Download
00259_2023_Article_6566.pdf 1,76MB
WeightNameValue
1000 Titel
  • Automated identification of uncertain cases in deep learning-based classification of dopamine transporter SPECT to improve clinical utility and acceptance
1000 Autor/in
  1. Budenkotte, Thomas |
  2. Apostolova, Ivayla |
  3. Opfer, Roland |
  4. Krüger, Julia |
  5. Klutmann, Susanne |
  6. Buchert, Ralph |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-22
1000 Erschienen in
1000 Quellenangabe
  • 51(5):1333-1344
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00259-023-06566-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957699/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Deep convolutional neural networks (CNN) are promising for automatic classification of dopamine transporter (DAT)-SPECT images. Reporting the certainty of CNN-based decisions is highly desired to flag cases that might be misclassified and, therefore, require particularly careful inspection by the user. The aim of the current study was to design and validate a CNN-based system for the identification of uncertain cases.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>A network ensemble (NE) combining five CNNs was trained for binary classification of [<jats:sup>123</jats:sup>I]FP-CIT DAT-SPECT images as “normal” or “neurodegeneration-typical reduction” with high accuracy (NE for classification, NEfC). An uncertainty detection module (UDM) was obtained by combining two additional NE, one trained for detection of “reduced” DAT-SPECT with high sensitivity, the other with high specificity. A case was considered “uncertain” if the “high sensitivity” NE and the “high specificity” NE disagreed. An internal “development” dataset of 1740 clinical DAT-SPECT images was used for training (<jats:italic>n</jats:italic> = 1250) and testing (<jats:italic>n</jats:italic> = 490). Two independent datasets with different image characteristics were used for testing only (<jats:italic>n</jats:italic> = 640, 645). Three established approaches for uncertainty detection were used for comparison (sigmoid, dropout, model averaging).</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>In the test data from the development dataset, the NEfC achieved 98.0% accuracy. 4.3% of all test cases were flagged as “uncertain” by the UDM: 2.5% of the correctly classified cases and 90% of the misclassified cases. NEfC accuracy among “certain” cases was 99.8%. The three comparison methods were less effective in labelling misclassified cases as “uncertain” (40–80%). These findings were confirmed in both additional test datasets.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>The UDM allows reliable identification of uncertain [<jats:sup>123</jats:sup>I]FP-CIT SPECT with high risk of misclassification. We recommend that automatic classification of [<jats:sup>123</jats:sup>I]FP-CIT SPECT images is combined with an UDM to improve clinical utility and acceptance. The proposed UDM method (“high sensitivity versus high specificity”) might be useful also for DAT imaging with other ligands and for other binary classification tasks.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Deep Learning [MeSH]
lokal Dopamine transporter
lokal Humans [MeSH]
lokal Tomography, Emission-Computed, Single-Photon/methods [MeSH]
lokal Uncertainty
lokal Dopamine Plasma Membrane Transport Proteins [MeSH]
lokal Original Article
lokal FP-CIT
lokal SPECT
lokal Convolutional neural network
lokal Deep learning
lokal Tropanes [MeSH]
lokal Uncertainty [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QnVkZW5rb3R0ZSwgVGhvbWFz|https://frl.publisso.de/adhoc/uri/QXBvc3RvbG92YSwgSXZheWxh|https://frl.publisso.de/adhoc/uri/T3BmZXIsIFJvbGFuZA==|https://frl.publisso.de/adhoc/uri/S3LDvGdlciwgSnVsaWE=|https://frl.publisso.de/adhoc/uri/S2x1dG1hbm4sIFN1c2FubmU=|https://orcid.org/0000-0002-0945-0724
1000 Hinweis
  • DeepGreen-ID: c59389a04cf84e70b3f33b1dd354e8c0 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ;
1000 Label
1000 Förderer
  1. Bundesministerium für Wirtschaft und Klimaschutz |
  2. Universitätsklinikum Hamburg-Eppendorf (UKE) |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Wirtschaft und Klimaschutz |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Hamburg-Eppendorf (UKE) |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522184.rdf
1000 Erstellt am 2025-07-06T13:03:54.177+0200
1000 Erstellt von 322
1000 beschreibt frl:6522184
1000 Zuletzt bearbeitet 2025-08-04T08:23:56.602+0200
1000 Objekt bearb. Mon Aug 04 08:23:56 CEST 2025
1000 Vgl. frl:6522184
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522184 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source