Download
00296_2024_Article_5715.pdf 1,76MB
WeightNameValue
1000 Titel
  • Artificial intelligence-based quantification of pulmonary HRCT (AIqpHRCT) for the evaluation of interstitial lung disease in patients with inflammatory rheumatic diseases
1000 Autor/in
  1. Hoffmann, Tobias |
  2. Teichgräber, Ulf |
  3. Lassen-Schmidt, Bianca |
  4. RENZ, DIANE |
  5. Brüheim, Luis Benedict |
  6. Krämer, Martin |
  7. Prof. Dr. Oelzner, Peter |
  8. Böttcher, Joachim |
  9. Güttler, Felix |
  10. Wolf, MHBA, Prof. Dr. Gunter |
  11. Pfeil, Alexander |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-09
1000 Erschienen in
1000 Quellenangabe
  • 44(11):2483-2496
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00296-024-05715-0 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424669/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>High-resolution computed tomography (HRCT) is important for diagnosing interstitial lung disease (ILD) in inflammatory rheumatic disease (IRD) patients. However, visual ILD assessment via HRCT often has high inter-reader variability. Artificial intelligence (AI)-based techniques for quantitative image analysis promise more accurate diagnostic and prognostic information. This study evaluated the reliability of artificial intelligence-based quantification of pulmonary HRCT (AIqpHRCT) in IRD-ILD patients and verified IRD-ILD quantification using AIqpHRCT in the clinical setting. Reproducibility of AIqpHRCT was verified for each typical HRCT pattern (ground-glass opacity [GGO], non-specific interstitial pneumonia [NSIP], usual interstitial pneumonia [UIP], granuloma). Additional, 50 HRCT datasets from 50 IRD-ILD patients using AIqpHRCT were analysed and correlated with clinical data and pulmonary lung function parameters. AIqpHRCT presented 100% agreement (coefficient of variation = 0.00%, intraclass correlation coefficient = 1.000) regarding the detection of the different HRCT pattern. Furthermore, AIqpHRCT data showed an increase of ILD from 10.7 ± 28.3% (median = 1.3%) in GGO to 18.9 ± 12.4% (median = 18.0%) in UIP pattern. The extent of fibrosis negatively correlated with FVC (ρ=-0.501), TLC (ρ=-0.622), and DLCO (ρ=-0.693) (<jats:italic>p</jats:italic> &lt; 0.001). GGO measured by AIqpHRCT also significant negatively correlated with DLCO (ρ=-0.699), TLC (ρ=-0.580) and FVC (ρ=-0.423). For the first time, the study demonstrates that AIpqHRCT provides a highly reliable method for quantifying lung parenchymal changes in HRCT images of IRD-ILD patients. Further, the AIqpHRCT method revealed significant correlations between the extent of ILD and lung function parameters. This highlights the potential of AIpqHRCT in enhancing the accuracy of ILD diagnosis and prognosis in clinical settings, ultimately improving patient management and outcomes.</jats:p>
1000 Sacherschließung
lokal Female [MeSH]
lokal Rheumatic Diseases/diagnostic imaging [MeSH]
lokal Aged [MeSH]
lokal Rheumatic Diseases/complications [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Observational Research
lokal Middle Aged [MeSH]
lokal Lung Diseases, Interstitial/etiology [MeSH]
lokal Lung/diagnostic imaging [MeSH]
lokal Artificial Intelligence [MeSH]
lokal Lung/physiopathology [MeSH]
lokal Artificial intelligence-based quantification of pulmonary
lokal Tomography, X-Ray Computed [MeSH]
lokal High-resolution computed tomography
lokal Male [MeSH]
lokal Reproducibility of Results [MeSH]
lokal Inflammatory rheumatic diseases
lokal Lung Diseases, Interstitial/physiopathology [MeSH]
lokal Interstitial lung disease
lokal Lung Diseases, Interstitial/diagnostic imaging [MeSH]
lokal Quantification
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-2959-1126|https://orcid.org/0000-0002-4048-3938|https://orcid.org/0000-0001-7888-9928|https://orcid.org/0000-0002-3764-3697|https://frl.publisso.de/adhoc/uri/QnLDvGhlaW0sIEx1aXMgQmVuZWRpY3Q=|https://orcid.org/0000-0002-0173-9830|https://orcid.org/0000-0002-2218-4096|https://frl.publisso.de/adhoc/uri/QsO2dHRjaGVyLCBKb2FjaGlt|https://orcid.org/0000-0002-4414-2188|https://orcid.org/0000-0002-3291-0610|https://orcid.org/0000-0002-2709-6685
1000 Hinweis
  • DeepGreen-ID: 78b7e740b474402a9f1920e49a32a899 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ;
1000 Label
1000 Förderer
  1. Friedrich-Schiller-Universität Jena |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Friedrich-Schiller-Universität Jena |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522300.rdf
1000 Erstellt am 2025-07-06T13:55:26.153+0200
1000 Erstellt von 322
1000 beschreibt frl:6522300
1000 Zuletzt bearbeitet 2025-08-04T08:18:26.049+0200
1000 Objekt bearb. Mon Aug 04 08:18:26 CEST 2025
1000 Vgl. frl:6522300
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522300 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source