Download
12874_2024_Article_2131.pdf 4,83MB
WeightNameValue
1000 Titel
  • Selecting a randomization method for a multi-center clinical trial with stochastic recruitment considerations
1000 Autor/in
  1. Sverdlov, Oleksandr |
  2. Ryeznik, Yevgen |
  3. Anisimov, Volodymyr |
  4. Kuznetsova, Olga M |
  5. Knight, Ruth |
  6. Carter, Kerstine |
  7. Drescher, Sonja |
  8. Zhao, Wenle |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-28
1000 Erschienen in
1000 Quellenangabe
  • 24(1):52
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-023-02131-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900599/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The design of a multi-center randomized controlled trial (RCT) involves multiple considerations, such as the choice of the sample size, the number of centers and their geographic location, the strategy for recruitment of study participants, amongst others. There are plenty of methods to sequentially randomize patients in a multi-center RCT, with or without considering stratification factors. The goal of this paper is to perform a systematic assessment of such randomization methods for a multi-center 1:1 RCT assuming a competitive policy for the patient recruitment process.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We considered a Poisson-gamma model for the patient recruitment process with a uniform distribution of center activation times. We investigated 16 randomization methods (4 unstratified, 4 region-stratified, 4 center-stratified, 3 dynamic balancing randomization (DBR), and a complete randomization design) to sequentially randomize <jats:inline-formula><jats:alternatives><jats:tex-math>$$n=500$$</jats:tex-math><mml:math xmlns:mml='http://www.w3.org/1998/Math/MathML'> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>500</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> patients. Statistical properties of the recruitment process and the randomization procedures were assessed using Monte Carlo simulations. The operating characteristics included time to complete recruitment, number of centers that recruited a given number of patients, several measures of treatment imbalance and estimation efficiency under a linear model for the response, the expected proportions of correct guesses under two different guessing strategies, and the expected proportion of deterministic assignments in the allocation sequence.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Maximum tolerated imbalance (MTI) randomization methods such as big stick design, Ehrenfest urn design, and block urn design result in a better balance–randomness tradeoff than the conventional permuted block design (PBD) with or without stratification. Unstratified randomization, region-stratified randomization, and center-stratified randomization provide control of imbalance at a chosen level (trial, region, or center) but may fail to achieve balance at the other two levels. By contrast, DBR does a very good job controlling imbalance at all 3 levels while maintaining the randomized nature of treatment allocation. Adding more centers into the study helps accelerate the recruitment process but at the expense of increasing the number of centers that recruit very few (or no) patients—which may increase center-level imbalances for center-stratified and DBR procedures. Increasing the block size or the MTI threshold(s) may help obtain designs with improved randomness–balance tradeoff.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The choice of a randomization method is an important component of planning a multi-center RCT. Dynamic balancing randomization with carefully chosen MTI thresholds could be a very good strategy for trials with the competitive policy for patient recruitment.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Maximum tolerated imbalance
lokal Random Allocation [MeSH]
lokal Multi-center clinical trial
lokal Recruitment time
lokal Research
lokal Humans [MeSH]
lokal Patient Selection [MeSH]
lokal Allocation randomness
lokal Research Design [MeSH]
lokal Sample Size [MeSH]
lokal Poisson-gamma model
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-1626-2588|https://orcid.org/0000-0003-2997-8566|https://orcid.org/0000-0003-1230-1794|https://orcid.org/0000-0002-7037-3641|https://orcid.org/0000-0001-6810-2845|https://orcid.org/0009-0004-6144-2344|https://frl.publisso.de/adhoc/uri/RHJlc2NoZXIsIFNvbmph|https://frl.publisso.de/adhoc/uri/WmhhbywgV2VubGU=
1000 Hinweis
  • DeepGreen-ID: beb1c5e28b3847e28310ceb9c63035c5 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522522.rdf
1000 Erstellt am 2025-07-06T15:18:45.051+0200
1000 Erstellt von 322
1000 beschreibt frl:6522522
1000 Zuletzt bearbeitet 2025-07-31T15:56:52.927+0200
1000 Objekt bearb. Thu Jul 31 15:56:52 CEST 2025
1000 Vgl. frl:6522522
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522522 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source