Download
12874_2024_Article_2168.pdf 1,07MB
WeightNameValue
1000 Titel
  • An assessment of the informative value of data sharing statements in clinical trial registries
1000 Autor/in
  1. Ohmann, Christian |
  2. Panagiotopoulou, Maria |
  3. Canham, Steve |
  4. Felder, Gerd |
  5. Verde, Pablo Emilio |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-09
1000 Erschienen in
1000 Quellenangabe
  • 24(1):61
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-024-02168-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924983/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The provision of data sharing statements (DSS) for clinical trials has been made mandatory by different stakeholders. DSS are a device to clarify whether there is intention to share individual participant data (IPD). What is missing is a detailed assessment of whether DSS are providing clear and understandable information about the conditions for data sharing of IPD for secondary use.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>A random sample of 200 COVID-19 clinical trials with explicit DSS was drawn from the ECRIN clinical research metadata repository. The DSS were assessed and classified, by two experienced experts and one assessor with less experience in data sharing (DS), into different categories (unclear, no sharing, no plans, yes but vague, yes on request, yes with specified storage location, yes but with complex conditions).</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Between the two experts the agreement was moderate to substantial (kappa=0.62, 95% CI [0.55, 0.70]). Agreement considerably decreased when these experts were compared with a third person who was less experienced and trained in data sharing (“assessor”) (kappa=0.33, 95% CI [0.25, 0.41]; 0.35, 95% CI [0.27, 0.43]). Between the two experts and under supervision of an independent moderator, a consensus was achieved for those cases, where both experts had disagreed, and the result was used as “gold standard” for further analysis. At least some degree of willingness of DS (data sharing) was expressed in 63.5% (127/200) cases. Of these cases, around one quarter (31/127) were vague statements of support for data sharing but without useful detail. In around half of the cases (60/127) it was stated that IPD could be obtained by request. Only in in slightly more than 10% of the cases (15/127) it was stated that the IPD would be transferred to a specific data repository. In the remaining cases (21/127), a more complex regime was described or referenced, which could not be allocated to one of the three previous groups. As a result of the consensus meetings, the classification system was updated.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>The study showed that the current DSS that imply possible data sharing are often not easy to interpret, even by relatively experienced staff. Machine based interpretation, which would be necessary for any practical application, is currently not possible. Machine learning and / or natural language processing techniques might improve machine actionability, but would represent a very substantial investment of research effort. The cheaper and easier option would be for data providers, data requestors, funders and platforms to adopt a clearer, more structured and more standardised approach to specifying, providing and collecting DSS.</jats:p> </jats:sec><jats:sec> <jats:title>Trial registration</jats:title> <jats:p>The protocol for the study was pre-registered on ZENODO (<jats:ext-link xmlns:xlink='http://www.w3.org/1999/xlink' ext-link-type='uri' xlink:href='https://zenodo.org/record/7064624#.Y4DIAHbMJD8'>https://zenodo.org/record/7064624#.Y4DIAHbMJD8</jats:ext-link>).</jats:p> </jats:sec>
1000 Sacherschließung
lokal Expert
lokal Information Dissemination/methods [MeSH]
lokal Data sharing statement
lokal Clinical trial registry
lokal Data sharing
lokal Research
lokal Humans [MeSH]
lokal Research Design [MeSH]
lokal Consensus [MeSH]
lokal Registries [MeSH]
lokal Individual participant data
lokal Observer variation
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/T2htYW5uLCBDaHJpc3RpYW4=|https://frl.publisso.de/adhoc/uri/UGFuYWdpb3RvcG91bG91LCBNYXJpYQ==|https://frl.publisso.de/adhoc/uri/Q2FuaGFtLCBTdGV2ZQ==|https://frl.publisso.de/adhoc/uri/RmVsZGVyLCBHZXJk|https://frl.publisso.de/adhoc/uri/VmVyZGUsIFBhYmxvIEVtaWxpbw==
1000 Hinweis
  • DeepGreen-ID: a110d338edb7453bbbc9b08b11c102f4 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search) ;
1000 Label
1000 Förderer
  1. Horizon 2020 |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522538.rdf
1000 Erstellt am 2025-07-06T15:24:26.638+0200
1000 Erstellt von 322
1000 beschreibt frl:6522538
1000 Zuletzt bearbeitet 2025-08-04T08:11:13.993+0200
1000 Objekt bearb. Mon Aug 04 08:11:13 CEST 2025
1000 Vgl. frl:6522538
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522538 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source