Download
11571_2024_Article_10181.pdf 5,09MB
WeightNameValue
1000 Titel
  • Assessing the influence of latency variability on EEG classifiers - a case study of face repetition priming
1000 Autor/in
  1. Li, Yilin |
  2. Sommer, Werner |
  3. Tian, Liang |
  4. Zhou, Changsong |
1000 Verlag
  • Springer Netherlands
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-21
1000 Erschienen in
1000 Quellenangabe
  • 18(6):4055-4069
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11571-024-10181-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655819/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Data-driven strategies have been widely used to distinguish experimental effects on single-trial EEG signals. However, how latency variability, such as within-condition jitter or latency shifts between conditions, affects the performance of EEG classifiers has not been well investigated. Without explicitly considering and disentangling such attributes of single trials, neural network-based classifiers have limitations in measuring their contributions. Inspired by domain knowledge of subcomponent latency and amplitude from traditional cognitive neuroscience, this study applies a stepwise latency correction method on single trials to control for their contributions to classifier behavior. As a case study demonstrating the value of this method, we measure repetition priming effects of faces, which induce large reaction time differences, latency shifts, and amplitude effects in averaged event-related potentials. The results show that within-condition jitter negatively impacts classifier performance, but between-condition latency shifts improve accuracy, whereas genuine amplitude differences have no significant influence. While demonstrated in the case of priming effects, this methodology can be generalized to experiments involving many kinds of time-varying signals to account for the contributions of latency variability to classifier performance.</jats:p>
1000 Sacherschließung
lokal ERP
lokal Single trial
lokal Trial-to-trial variability
lokal Latency jitter
lokal Latency shifts
lokal Research Article
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGksIFlpbGlu|https://frl.publisso.de/adhoc/uri/U29tbWVyLCBXZXJuZXI=|https://frl.publisso.de/adhoc/uri/VGlhbiwgTGlhbmc=|https://frl.publisso.de/adhoc/uri/WmhvdSwgQ2hhbmdzb25n
1000 Hinweis
  • DeepGreen-ID: 62d0ef3e0ba04d88a9295d67b55419ee ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Hong Kong Baptist University |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Hong Kong Baptist University |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522743.rdf
1000 Erstellt am 2025-07-06T16:48:23.726+0200
1000 Erstellt von 322
1000 beschreibt frl:6522743
1000 Zuletzt bearbeitet 2025-07-29T16:43:05.600+0200
1000 Objekt bearb. Tue Jul 29 16:43:05 CEST 2025
1000 Vgl. frl:6522743
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522743 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source