Download
12913_2024_Article_11493.pdf 1,47MB
WeightNameValue
1000 Titel
  • Assessing the impact of Delta and Omicron in German intensive care units: a retrospective, nationwide multistate analysis
1000 Autor/in
  1. Lottes, Matthäus |
  2. Grodd, Marlon |
  3. Grabenhenrich, Linus |
  4. Wolkewitz, Martin |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-23
1000 Erschienen in
1000 Quellenangabe
  • 24(1):1107
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12913-024-11493-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421169/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The spread of several severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants of concern (VOCs) has repeatedly led to increasing numbers of coronavirus disease 2019 (COVID-19) patients in German intensive care units (ICUs), resulting in capacity shortages and even transfers of COVID-19 intensive care patients between federal states in late 2021. In this respect, there is scarce evidence on the impact of predominant VOCs in German ICUs at the population level.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>A retrospective cohort study was conducted from July 01, 2021, to May 31, 2022, using daily nationwide inpatient billing data from German hospitals on COVID-19 intensive care patients and SARS-CoV-2 sequence data from Germany. A multivariable Poisson regression analysis was performed to estimate the incidence rate ratios (IRRs) of transfer (to another hospital during inpatient care), discharge (alive) and death of COVID-19 intensive care patients associated with Delta or Omicron, adjusted for age group and sex. In addition, a multistate approach was used for the clinical trajectories of COVID-19 intensive care patients to estimate their competing risk of transfer, discharge or death associated with Delta or Omicron, specifically concerning patient age.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>A total of 6046 transfers, 33256 discharges, and 12114 deaths were included. Poisson regression analysis comparing Omicron versus Delta yielded an estimated adjusted IRR of 1.23 (95% CI 1.16–1.30) for transfers, 2.27 (95% CI 2.20–2.34) for discharges and 0.98 (95% CI 0.94–1.02) for deaths. For ICU deaths in particular, the estimated adjusted IRR increased from 0.14 (95% CI 0.08–0.22) for the 0–9 age group to 4.09 (95% CI 3.74–4.47) for those aged 90 and older compared to the reference group of 60-69-year-olds. Multistate analysis revealed that Omicron was associated with a higher estimated risk of discharge for COVID-19 intensive care patients across all ages, while Delta infection was associated with a higher estimated risk of transfer and death.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Retrospective, nationwide comparisons of transfers, discharges and deaths of COVID-19 intensive care patients during Delta- and Omicron-dominated periods in Germany suggested overall less severe clinical trajectories associated with Omicron. Age was confirmed to be an important determinant of fatal clinical outcomes in COVID-19 intensive care patients, necessitating close therapeutic care for elderly people and appropriate public health control measures.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Intensive Care Units/statistics
gnd 1206347392 COVID-19
lokal Female [MeSH]
lokal Aged, 80 and over [MeSH]
lokal Aged [MeSH]
lokal Variant of concern
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Retrospective Studies [MeSH]
lokal Middle Aged [MeSH]
lokal COVID-19
lokal Germany/epidemiology [MeSH]
lokal Intensive care unit
lokal COVID-19/mortality [MeSH]
lokal Male [MeSH]
lokal Competing risk
lokal Research
lokal Patient Transfer/statistics
lokal Multistate model
lokal COVID-19/epidemiology [MeSH]
lokal SARS-CoV-2 [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TG90dGVzLCBNYXR0aMOkdXM=|https://frl.publisso.de/adhoc/uri/R3JvZGQsIE1hcmxvbg==|https://frl.publisso.de/adhoc/uri/R3JhYmVuaGVucmljaCwgTGludXM=|https://frl.publisso.de/adhoc/uri/V29sa2V3aXR6LCBNYXJ0aW4=
1000 Hinweis
  • DeepGreen-ID: a44506bb779a430880a550caa6b268ae ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Robert Koch Institut |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Robert Koch Institut |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522775.rdf
1000 Erstellt am 2025-07-06T16:59:55.170+0200
1000 Erstellt von 322
1000 beschreibt frl:6522775
1000 Zuletzt bearbeitet 2025-07-29T16:42:38.748+0200
1000 Objekt bearb. Tue Jul 29 16:42:38 CEST 2025
1000 Vgl. frl:6522775
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522775 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source