Download
10916_2024_Article_2066.pdf 1,60MB
WeightNameValue
1000 Titel
  • Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model
1000 Autor/in
  1. Li, Jianning |
  2. Ellis, David G. |
  3. Pepe, Antonio |
  4. Gsaxner, Christina |
  5. Aizenberg, Michele R. |
  6. Kleesiek, Jens |
  7. Egger, Jan |
1000 Verlag
  • Springer US
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-23
1000 Erschienen in
1000 Quellenangabe
  • 48(1):55
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10916-024-02066-y |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116219/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title> <jats:p>Designing implants for large and complex cranial defects is a challenging task, even for professional designers. Current efforts on automating the design process focused mainly on convolutional neural networks (CNN), which have produced state-of-the-art results on reconstructing synthetic defects. However, existing CNN-based methods have been difficult to translate to clinical practice in cranioplasty, as their performance on large and complex cranial defects remains unsatisfactory. In this paper, we present a statistical shape model (SSM) built directly on the segmentation masks of the skulls represented as binary voxel occupancy grids and evaluate it on several cranial implant design datasets. Results show that, while CNN-based approaches outperform the SSM on synthetic defects, they are inferior to SSM when it comes to large, complex and real-world defects. Experienced neurosurgeons evaluate the implants generated by the SSM to be feasible for clinical use after minor manual corrections. Datasets and the SSM model are publicly available at <jats:ext-link xmlns:xlink='http://www.w3.org/1999/xlink' xlink:href='https://github.com/Jianningli/ssm' ext-link-type='uri'>https://github.com/Jianningli/ssm</jats:ext-link>.</jats:p>
1000 Sacherschließung
lokal Generalization
lokal Humans [MeSH]
lokal Skull/diagnostic imaging [MeSH]
lokal Cranioplasty
lokal Cranial implant design
lokal Neural Networks, Computer [MeSH]
lokal Prostheses and Implants [MeSH]
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Plastic Surgery Procedures/methods [MeSH]
lokal Original Paper
lokal Models, Statistical [MeSH]
lokal Statistical shape model
lokal Craniectomy
lokal Domain shift
lokal Skull/anatomy
lokal Craniotomy
lokal Deep learning
lokal Skull/surgery [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGksIEppYW5uaW5n|https://frl.publisso.de/adhoc/uri/RWxsaXMsIERhdmlkIEcu|https://frl.publisso.de/adhoc/uri/UGVwZSwgQW50b25pbw==|https://frl.publisso.de/adhoc/uri/R3NheG5lciwgQ2hyaXN0aW5h|https://frl.publisso.de/adhoc/uri/QWl6ZW5iZXJnLCBNaWNoZWxlIFIu|https://frl.publisso.de/adhoc/uri/S2xlZXNpZWssIEplbnM=|https://frl.publisso.de/adhoc/uri/RWdnZXIsIEphbg==
1000 Hinweis
  • DeepGreen-ID: d6c9d3dbc44c4c8096d84bd55d29616e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universitätsklinikum Essen |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Essen |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522839.rdf
1000 Erstellt am 2025-07-06T17:26:26.208+0200
1000 Erstellt von 322
1000 beschreibt frl:6522839
1000 Zuletzt bearbeitet 2025-07-29T16:58:31.778+0200
1000 Objekt bearb. Tue Jul 29 16:58:31 CEST 2025
1000 Vgl. frl:6522839
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522839 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source