Download
12882_2024_Article_3809.pdf 3,83MB
WeightNameValue
1000 Titel
  • Prediction of gastrointestinal bleeding hospitalization risk in hemodialysis using machine learning
1000 Autor/in
  1. Larkin, John W. |
  2. Lama, Suman |
  3. Chaudhuri, Sheetal |
  4. Willetts, Joanna |
  5. Winter, Anke C. |
  6. Jiao, Yue |
  7. Stauss-Grabo, Manuela |
  8. Usvyat, Len A. |
  9. Hymes, Jeffrey L. |
  10. Maddux, Franklin W. |
  11. Wheeler, David C. |
  12. Stenvinkel, Peter |
  13. Floege, Jürgen |
  14. on behalf of the INSPIRE Core Group |
  15. Winter, Anke |
  16. Zimbelman, Justin |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-19
1000 Erschienen in
1000 Quellenangabe
  • 25(1):366
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12882-024-03809-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490046/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Gastrointestinal bleeding (GIB) is a clinical challenge in kidney failure. INSPIRE group assessed if machine learning could determine a hemodialysis (HD) patient’s 180-day GIB hospitalization risk.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>An eXtreme Gradient Boosting (XGBoost) and logistic regression model were developed using an HD dataset in United States (2017–2020). Patient data was randomly split (50% training, 30% validation, and 20% testing). HD treatments ≤ 180 days before GIB hospitalization were classified as positive observations; others were negative. Models considered 1,303 exposures/covariates. Performance was measured using unseen testing data.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Incidence of 180-day GIB hospitalization was 1.18% in HD population (<jats:italic>n</jats:italic> = 451,579), and 1.12% in testing dataset (<jats:italic>n</jats:italic> = 38,853). XGBoost showed area under the receiver operating curve (AUROC) = 0.74 (95% confidence interval (CI) 0.72, 0.76) versus logistic regression showed AUROC = 0.68 (95% CI 0.66, 0.71). Sensitivity and specificity were 65.3% (60.9, 69.7) and 68.0% (67.6, 68.5) for XGBoost versus 68.9% (64.7, 73.0) and 57.0% (56.5, 57.5) for logistic regression, respectively. Associations in exposures were consistent for many factors. Both models showed GIB hospitalization risk was associated with older age, disturbances in anemia/iron indices, recent all-cause hospitalizations, and bone mineral metabolism markers. XGBoost showed high importance on outcome prediction for serum 25 hydroxy (25OH) vitamin D levels, while logistic regression showed high importance for parathyroid hormone (PTH) levels.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Machine learning can be considered for early detection of GIB event risk in HD. XGBoost outperforms logistic regression, yet both appear suitable. External and prospective validation of these models is needed. Association between bone mineral metabolism markers and GIB events was unexpected and warrants investigation.</jats:p> </jats:sec><jats:sec> <jats:title>Trial registration</jats:title> <jats:p>This retrospective analysis of real-world data was not a prospective clinical trial and registration is not applicable.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Aged [MeSH]
lokal Hospitalization [MeSH]
lokal Risk Factors [MeSH]
lokal Bleeding
lokal Hospitalization
lokal Male [MeSH]
lokal Kidney Failure
lokal Machine Learning [MeSH]
lokal Risk Assessment/methods [MeSH]
lokal Kidney Failure, Chronic/epidemiology [MeSH]
lokal Renal Dialysis/adverse effects [MeSH]
lokal Female [MeSH]
lokal Humans [MeSH]
lokal Predictive Modeling
lokal Incidence [MeSH]
lokal Logistic Models [MeSH]
lokal Middle Aged [MeSH]
lokal Artificial intelligence in nephrology
lokal Gastrointestinal Hemorrhage/etiology [MeSH]
lokal Kidney Failure, Chronic/blood [MeSH]
lokal Gastrointestinal Hemorrhage/blood [MeSH]
lokal Research
lokal Gastrointestinal
lokal Gastrointestinal Hemorrhage/epidemiology [MeSH]
lokal Kidney Failure, Chronic/therapy [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGFya2luLCBKb2huIFcu|https://frl.publisso.de/adhoc/uri/TGFtYSwgU3VtYW4=|https://frl.publisso.de/adhoc/uri/Q2hhdWRodXJpLCBTaGVldGFs|https://frl.publisso.de/adhoc/uri/V2lsbGV0dHMsIEpvYW5uYQ==|https://frl.publisso.de/adhoc/uri/V2ludGVyLCBBbmtlIEMu|https://frl.publisso.de/adhoc/uri/SmlhbywgWXVl|https://frl.publisso.de/adhoc/uri/U3RhdXNzLUdyYWJvLCBNYW51ZWxh|https://frl.publisso.de/adhoc/uri/VXN2eWF0LCBMZW4gQS4=|https://frl.publisso.de/adhoc/uri/SHltZXMsIEplZmZyZXkgTC4=|https://frl.publisso.de/adhoc/uri/TWFkZHV4LCBGcmFua2xpbiBXLg==|https://frl.publisso.de/adhoc/uri/V2hlZWxlciwgRGF2aWQgQy4=|https://frl.publisso.de/adhoc/uri/U3RlbnZpbmtlbCwgUGV0ZXI=|https://frl.publisso.de/adhoc/uri/RmxvZWdlLCBKw7xyZ2Vu|https://frl.publisso.de/adhoc/uri/b24gYmVoYWxmIG9mIHRoZSBJTlNQSVJFIENvcmUgR3JvdXA=|https://frl.publisso.de/adhoc/uri/V2ludGVyLCBBbmtl|https://frl.publisso.de/adhoc/uri/WmltYmVsbWFuLCBKdXN0aW4=
1000 Hinweis
  • DeepGreen-ID: 90faf128110a486090287f517b549113 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Fresenius Medical Care North America |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Fresenius Medical Care North America |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522875.rdf
1000 Erstellt am 2025-07-06T17:39:45.775+0200
1000 Erstellt von 322
1000 beschreibt frl:6522875
1000 Zuletzt bearbeitet 2025-07-29T22:49:55.708+0200
1000 Objekt bearb. Tue Jul 29 22:49:55 CEST 2025
1000 Vgl. frl:6522875
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522875 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source