Download
00704_2024_Article_5179.pdf 1,97MB
WeightNameValue
1000 Titel
  • A comparison of climate drivers’ impacts on silage maize yield shock in Germany
1000 Autor/in
  1. Stainoh, Federico |
  2. Moemken, Julia |
  3. Gouveia, Celia M. |
  4. Pinto, Joaquim G. |
1000 Verlag
  • Springer Vienna
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-10
1000 Erschienen in
1000 Quellenangabe
  • 155(10):9197-9209
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00704-024-05179-z |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Extreme weather events have become more frequent and severe with ongoing climate change, with a huge implication for the agricultural sector and detrimental effects on crop yield. In this study, we compare several combinations of climate indices and utilized the Least Absolute Shrinkage and Selection Operator (LASSO) to explain the probabilities of substantial drops in silage maize yield (here defined as “yield shock” by using a 15th percentile as threshold) in Germany between 1999 and 2020. We compare the variable importance and the predictability skill of six combinations of climate indices using the Matthews Correlation Coefficient (MCC). Finally, we delve into year-to-year predictions by comparing them against the historical series and examining the variables contributing to high and low predicted yield shock probabilities. We find that cold conditions during April and hot and/or dry conditions during July increase the chance of silage maize yield shock. Moreover, a combination of simple variables (e.g. total precipitation) and complex variables (e.g. cumulative cold under cold nights) enhances predictive accuracy. Lastly, we find that the years with higher predicted yield shock probabilities are characterized mainly by relatively hotter and drier conditions during July compared to years with lower yield shock probabilities. Our findings enhance our understanding of how weather impacts maize crop yield shocks and underscore the importance of considering complex variables and using effective selection methods, particularly when addressing climate-related events.</jats:p>
1000 Sacherschließung
lokal Research
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U3RhaW5vaCwgRmVkZXJpY28=|https://frl.publisso.de/adhoc/uri/TW9lbWtlbiwgSnVsaWE=|https://frl.publisso.de/adhoc/uri/R291dmVpYSwgQ2VsaWEgTS4=|https://frl.publisso.de/adhoc/uri/UGludG8sIEpvYXF1aW0gRy4=
1000 Hinweis
  • DeepGreen-ID: c81c8177efbb4f738fa73b38aed6a226 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Karlsruher Institut für Technologie (KIT) |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Karlsruher Institut für Technologie (KIT) |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6523144.rdf
1000 Erstellt am 2025-07-06T19:37:57.571+0200
1000 Erstellt von 322
1000 beschreibt frl:6523144
1000 Zuletzt bearbeitet 2025-07-29T16:04:44.094+0200
1000 Objekt bearb. Tue Jul 29 16:04:44 CEST 2025
1000 Vgl. frl:6523144
1000 Oai Id
  1. oai:frl.publisso.de:frl:6523144 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source