Download
10654_2024_Article_1114.pdf 1,71MB
WeightNameValue
1000 Titel
  • The AccelerAge framework: a new statistical approach to predict biological age based on time-to-event data
1000 Autor/in
  1. Sluiskes, Marije |
  2. Goeman, Jelle |
  3. Beekman, Marian |
  4. Slagboom, Eline |
  5. van den Akker, Erik |
  6. Putter, Hein |
  7. Rodríguez-Girondo, Mar |
1000 Verlag
  • Springer Netherlands
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-04-06
1000 Erschienen in
1000 Quellenangabe
  • 39(6):623-641
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10654-024-01114-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249598/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Aging is a multifaceted and intricate physiological process characterized by a gradual decline in functional capacity, leading to increased susceptibility to diseases and mortality. While chronological age serves as a strong risk factor for age-related health conditions, considerable heterogeneity exists in the aging trajectories of individuals, suggesting that biological age may provide a more nuanced understanding of the aging process. However, the concept of biological age lacks a clear operationalization, leading to the development of various biological age predictors without a solid statistical foundation. This paper addresses these limitations by proposing a comprehensive operationalization of biological age, introducing the “AccelerAge” framework for predicting biological age, and introducing previously underutilized evaluation measures for assessing the performance of biological age predictors. The AccelerAge framework, based on Accelerated Failure Time (AFT) models, directly models the effect of candidate predictors of aging on an individual’s survival time, aligning with the prevalent metaphor of aging as a clock. We compare predictors based on the AccelerAge framework to a predictor based on the GrimAge predictor, which is considered one of the best-performing biological age predictors, using simulated data as well as data from the UK Biobank and the Leiden Longevity Study. Our approach seeks to establish a robust statistical foundation for biological age clocks, enabling a more accurate and interpretable assessment of an individual’s aging status.</jats:p>
1000 Sacherschließung
lokal Female [MeSH]
lokal Aged, 80 and over [MeSH]
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Biological age
lokal Aging Epidemiology
lokal Middle Aged [MeSH]
lokal Accelerated failure time models
lokal Aging
lokal Longevity [MeSH]
lokal Male [MeSH]
lokal Models, Statistical [MeSH]
lokal Aging/physiology [MeSH]
lokal Metabolomics
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-2063-3492|https://frl.publisso.de/adhoc/uri/R29lbWFuLCBKZWxsZQ==|https://frl.publisso.de/adhoc/uri/QmVla21hbiwgTWFyaWFu|https://frl.publisso.de/adhoc/uri/U2xhZ2Jvb20sIEVsaW5l|https://frl.publisso.de/adhoc/uri/dmFuIGRlbiBBa2tlciwgRXJpaw==|https://frl.publisso.de/adhoc/uri/UHV0dGVyLCBIZWlu|https://frl.publisso.de/adhoc/uri/Um9kcsOtZ3Vlei1HaXJvbmRvLCBNYXI=
1000 Hinweis
  • DeepGreen-ID: a7143723fb3f4bfb8291b559e8275f69 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
  2. Seventh Framework Programme |
  3. Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
  4. ZonMw |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Seventh Framework Programme |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer ZonMw |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6523236.rdf
1000 Erstellt am 2025-07-06T20:14:22.329+0200
1000 Erstellt von 322
1000 beschreibt frl:6523236
1000 Zuletzt bearbeitet 2025-07-30T00:23:10.558+0200
1000 Objekt bearb. Wed Jul 30 00:23:10 CEST 2025
1000 Vgl. frl:6523236
1000 Oai Id
  1. oai:frl.publisso.de:frl:6523236 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source