Download
12916_2024_Article_3780.pdf 1,73MB
WeightNameValue
1000 Titel
  • Parental epigenetic age acceleration and risk of adverse birth outcomes: the Norwegian mother, father and child cohort study
1000 Autor/in
  1. Magnus, Maria C. |
  2. Lee, Yunsung |
  3. Carlsen, Ellen Ø. |
  4. Arge, Lise A. |
  5. Jugessur, Astanand |
  6. Kvalvik, Liv G. |
  7. Morken, Nils-Halvdan |
  8. Ramlau-Hansen, Cecilia H. |
  9. Myrskylä, Mikko |
  10. Magnus, Per |
  11. Håberg, Siri E. |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-11-25
1000 Erschienen in
1000 Quellenangabe
  • 22(1):554
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12916-024-03780-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590542/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Few studies have examined associations between maternal epigenetic age acceleration and adverse birth outcomes, and none have investigated paternal epigenetic age acceleration. Our objective was to assess the associations of parental (both maternal and paternal) epigenetic age acceleration in relation to birth outcomes.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Parental epigenetic age was estimated using seven established epigenetic clocks in 2198 mothers and 2193 fathers from the Norwegian Mother, Father, and Child Cohort Study (MoBa). Individual epigenetic age acceleration was then calculated as residuals from linear regressions of estimates from the epigenetic clocks on chronological age. Further, linear regression was used to analyze differences in continuous outcomes (gestational length and standardized birthweight), while logistic regression was used for binary outcomes (preterm birth, post-term birth, small-for-gestational age [SGA], large-for-gestational age [LGA], and pre-eclampsia), adjusting for chronological age, parity, educational level, smoking, and BMI.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Increasing maternal, but not paternal, epigenetic age acceleration was associated with decreased gestational length for five out of six clocks, with adjusted estimates ranging from a mean 0.51-day decrease (95% CI − 1.00, − 0.02; <jats:italic>p</jats:italic>-value 0.043) for the Horvath clock to a 0.80-day decrease (95% CI − 1.29, − 0.31; <jats:italic>p</jats:italic>-value 0.002) for the Levine clock. An association with increasing maternal epigenetic age acceleration according to the DunedinPACE clock was also seen with greater standardized birthweight [mean difference 0.08 (95% CI 0.04, 0.12; <jats:italic>p</jats:italic>-value &lt; 0.001]. These results were also reflected in an increased risk of spontaneous preterm birth and LGA. No associations were observed with post-term birth, SGA, or pre-eclampsia.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Maternal, but not paternal, epigenetic age acceleration is associated with shorter pregnancies and an increased risk of spontaneous preterm birth. This may suggest that women’s biological age acceleration, including factors such as metabolic and physiologic state, is an additional risk factor for preterm delivery, beyond chronological age.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Infant, Newborn [MeSH]
lokal Premature Birth/genetics [MeSH]
lokal Female [MeSH]
lokal Gestational age
lokal Premature Birth/epidemiology [MeSH]
lokal Adult [MeSH]
lokal Fathers [MeSH]
lokal Humans [MeSH]
lokal Birthweight
lokal Epigenetic age
lokal Cohort Studies [MeSH]
lokal Norway/epidemiology [MeSH]
lokal Epigenesis, Genetic [MeSH]
lokal Adverse birth outcomes
lokal Male [MeSH]
lokal Research
lokal Birth Weight/genetics [MeSH]
lokal Young Adult [MeSH]
lokal Pre-eclampsia
lokal Pregnancy Outcome/genetics [MeSH]
lokal Pregnancy [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWFnbnVzLCBNYXJpYSBDLg==|https://frl.publisso.de/adhoc/uri/TGVlLCBZdW5zdW5n|https://frl.publisso.de/adhoc/uri/Q2FybHNlbiwgRWxsZW4gw5gu|https://frl.publisso.de/adhoc/uri/QXJnZSwgTGlzZSBBLg==|https://frl.publisso.de/adhoc/uri/SnVnZXNzdXIsIEFzdGFuYW5k|https://frl.publisso.de/adhoc/uri/S3ZhbHZpaywgTGl2IEcu|https://frl.publisso.de/adhoc/uri/TW9ya2VuLCBOaWxzLUhhbHZkYW4=|https://frl.publisso.de/adhoc/uri/UmFtbGF1LUhhbnNlbiwgQ2VjaWxpYSBILg==|https://frl.publisso.de/adhoc/uri/TXlyc2t5bMOkLCBNaWtrbw==|https://frl.publisso.de/adhoc/uri/TWFnbnVzLCBQZXI=|https://frl.publisso.de/adhoc/uri/SMOlYmVyZywgU2lyaSBFLg==
1000 Hinweis
  • DeepGreen-ID: 3636ac53cbcc43d28f7fb682a4cc953f ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Norwegian Institute of Public Health |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Norwegian Institute of Public Health |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6523784.rdf
1000 Erstellt am 2025-07-07T00:00:46.794+0200
1000 Erstellt von 322
1000 beschreibt frl:6523784
1000 Zuletzt bearbeitet 2025-07-29T22:21:35.337+0200
1000 Objekt bearb. Tue Jul 29 22:21:35 CEST 2025
1000 Vgl. frl:6523784
1000 Oai Id
  1. oai:frl.publisso.de:frl:6523784 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source