Download
12960_2024_Article_957.pdf 1022,31KB
WeightNameValue
1000 Titel
  • How to ensure an appropriate oral health workforce? Modelling future scenarios for the Netherlands
1000 Autor/in
  1. Janssen, Jip |
  2. Pöld, Ave |
  3. Islam, Md Monirul |
  4. Németh, Orsolya |
  5. Grytten, Jostein |
  6. Woods, Noel |
  7. Listl, Stefan |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-11-08
1000 Erschienen in
1000 Quellenangabe
  • 22(1):73
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12960-024-00957-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549858/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Current methods for oral health workforce planning lack responsiveness to dynamic needs, hampering efficiency, equity and sustainability. Effective workforce planning is vital for resilient health care systems and achieving universal health coverage. Given this context, we developed and operationalised a needs-adaptive oral health workforce planning model and explored the potential of various future scenarios.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Using publicly available data, including the Special Eurobarometer 330 Oral Health Survey, we applied the model in a hypothetical context focusing on the Dutch population’s dental needs from 2022 to 2050. We compared current and future provider supply and requirement and examined, in addition to a base case scenario, several alternative scenarios. These included epidemiological transition scenarios with different oral health morbidity trajectories, skill-mix scenarios with independent oral hygienists conducting check-ups and multiple dental student intake and training duration (5 instead of 6 years) scenarios.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Based on the aforementioned historical data, our model projects that provider requirement will exceed supply for the planning period. If the percentage of people having all natural teeth increases by 10% or 20% in 2032, 34 or 68 additional full-time equivalent (FTE) dentists will be required, respectively, compared to the base case scenario. In the skill-mix scenario, the model indicates that prioritising oral hygienists for check-ups and shifting dentists’ focus to primarily complex care could address population needs more efficiently. Among the student intake and training duration scenarios, increasing intake to 375 and, to a lesser extent, reducing training to 5 years is projected to most effectively close the provider gap.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The study underscores the importance of understanding oral health morbidity trajectories for effective capacity planning. Due to limited dental epidemiological data, projections carry substantial uncertainty. Currently, demand for FTE dentists seems to exceed supply, though this may vary with epidemiological changes. Skill-mix strategies could offer efficiency gains by redistributing tasks, while adjustments in dental intake and training duration could also help address the requirement-supply gap. Resolving dentistry workforce challenges requires a multifaceted approach, including strengthening oral epidemiology projections, addressing the root causes of dental health issues and prioritising harmonious dental public health and general practice prevention measures.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Dental Hygienists/supply
lokal Dentists/supply
lokal Health Planning [MeSH]
lokal Humans [MeSH]
lokal Health Workforce [MeSH]
lokal Provider requirement
lokal Skill-mix
lokal Epidemiological scenarios
lokal Oral health
lokal Forecasting [MeSH]
lokal Health Services Needs and Demand [MeSH]
lokal Research
lokal Provider supply
lokal Training duration
lokal Oral Health [MeSH]
lokal Workforce planning model
lokal Netherlands [MeSH]
lokal Student intake
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SmFuc3NlbiwgSmlw|https://frl.publisso.de/adhoc/uri/UMO2bGQsIEF2ZQ==|https://frl.publisso.de/adhoc/uri/SXNsYW0sIE1kIE1vbmlydWw=|https://frl.publisso.de/adhoc/uri/TsOpbWV0aCwgT3Jzb2x5YQ==|https://frl.publisso.de/adhoc/uri/R3J5dHRlbiwgSm9zdGVpbg==|https://frl.publisso.de/adhoc/uri/V29vZHMsIE5vZWw=|https://frl.publisso.de/adhoc/uri/TGlzdGwsIFN0ZWZhbg==
1000 Hinweis
  • DeepGreen-ID: a7a5686e6c18417da05ff856aafcea3f ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. HORIZON EUROPE Health |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer HORIZON EUROPE Health |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6524054.rdf
1000 Erstellt am 2025-07-07T01:52:33.314+0200
1000 Erstellt von 322
1000 beschreibt frl:6524054
1000 Zuletzt bearbeitet 2025-07-29T20:12:50.538+0200
1000 Objekt bearb. Tue Jul 29 20:12:50 CEST 2025
1000 Vgl. frl:6524054
1000 Oai Id
  1. oai:frl.publisso.de:frl:6524054 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source