Download
12911_2024_Article_2641.pdf 2,00MB
WeightNameValue
1000 Titel
  • From admission to discharge: a systematic review of clinical natural language processing along the patient journey
1000 Autor/in
  1. Klug, Katrin |
  2. Beckh, Katharina |
  3. Antweiler, Dario |
  4. Chakraborty, Nilesh |
  5. Baldini, Giulia |
  6. Laue, Katharina |
  7. Hosch, René |
  8. Nensa, Felix |
  9. Schuler, Martin |
  10. Giesselbach, Sven |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-29
1000 Erschienen in
1000 Quellenangabe
  • 24(1):238
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12911-024-02641-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360876/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Medical text, as part of an electronic health record, is an essential information source in healthcare. Although natural language processing (NLP) techniques for medical text are developing fast, successful transfer into clinical practice has been rare. Especially the hospital domain offers great potential while facing several challenges including many documents per patient, multiple departments and complex interrelated processes.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>In this work, we survey relevant literature to identify and classify approaches which exploit NLP in the clinical context. Our contribution involves a systematic mapping of related research onto a prototypical patient journey in the hospital, along which medical documents are created, processed and consumed by hospital staff and patients themselves. Specifically, we reviewed which dataset types, dataset languages, model architectures and tasks are researched in current clinical NLP research. Additionally, we extract and analyze major obstacles during development and implementation. We discuss options to address them and argue for a focus on bias mitigation and model explainability.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>While a patient’s hospital journey produces a significant amount of structured and unstructured documents, certain steps and documents receive more research attention than others. Diagnosis, Admission and Discharge are clinical patient steps that are researched often across the surveyed paper. In contrast, our findings reveal significant under-researched areas such as Treatment, Billing, After Care, and Smart Home. Leveraging NLP in these stages can greatly enhance clinical decision-making and patient outcomes. Additionally, clinical NLP models are mostly based on radiology reports, discharge letters and admission notes, even though we have shown that many other documents are produced throughout the patient journey. There is a significant opportunity in analyzing a wider range of medical documents produced throughout the patient journey to improve the applicability and impact of NLP in healthcare.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Our findings suggest that there is a significant opportunity to leverage NLP approaches to advance clinical decision-making systems, as there remains a considerable understudied potential for the analysis of patient journey data.</jats:p></jats:sec>
1000 Sacherschließung
lokal Patient journey
lokal Patient Discharge [MeSH]
lokal Explainable ML
lokal Research
lokal Humans [MeSH]
lokal Out-of-distribution generalization
lokal Clinical natural language processing
lokal Electronic Health Records [MeSH]
lokal Natural Language Processing [MeSH]
lokal Bias
lokal Patient Admission [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S2x1ZywgS2F0cmlu|https://frl.publisso.de/adhoc/uri/QmVja2gsIEthdGhhcmluYQ==|https://frl.publisso.de/adhoc/uri/QW50d2VpbGVyLCBEYXJpbw==|https://frl.publisso.de/adhoc/uri/Q2hha3JhYm9ydHksIE5pbGVzaA==|https://frl.publisso.de/adhoc/uri/QmFsZGluaSwgR2l1bGlh|https://frl.publisso.de/adhoc/uri/TGF1ZSwgS2F0aGFyaW5h|https://frl.publisso.de/adhoc/uri/SG9zY2gsIFJlbsOp|https://frl.publisso.de/adhoc/uri/TmVuc2EsIEZlbGl4|https://frl.publisso.de/adhoc/uri/U2NodWxlciwgTWFydGlu|https://frl.publisso.de/adhoc/uri/R2llc3NlbGJhY2gsIFN2ZW4=
1000 Hinweis
  • DeepGreen-ID: 9d769d2f7f5a4fe88b702de0a91c9c35 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Ministry for Economic Affairs, Industry, Climate Action and Energy of the State of North-Rhine-Westphalia, Germany |
  2. Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Ministry for Economic Affairs, Industry, Climate Action and Energy of the State of North-Rhine-Westphalia, Germany |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6524324.rdf
1000 Erstellt am 2025-07-07T03:38:05.111+0200
1000 Erstellt von 322
1000 beschreibt frl:6524324
1000 Zuletzt bearbeitet 2025-07-29T19:50:08.972+0200
1000 Objekt bearb. Tue Jul 29 19:50:08 CEST 2025
1000 Vgl. frl:6524324
1000 Oai Id
  1. oai:frl.publisso.de:frl:6524324 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source