Download
13063_2024_Article_7970.pdf 1,23MB
WeightNameValue
1000 Titel
  • An e-mental health intervention to reduce depression symptoms in individuals with obesity: study protocol for the randomized, controlled, two-armed, confirmatory LightMood trial
1000 Autor/in
  1. Kocol, Dilara |
  2. Geiger, Sheila |
  3. Schweda, Adam |
  4. Beckord, Jil |
  5. Schadendorf, Theresa |
  6. Jansen, Christoph |
  7. Robitzsch, Anita |
  8. Skoda, Eva-Maria |
  9. Teufel, Martin |
  10. Bäuerle, Alexander |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-28
1000 Erschienen in
1000 Quellenangabe
  • 25(1):149
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13063-024-07970-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900592/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Patients with obesity often experience psychological distress, specifically depression symptoms. Due to various barriers, such as limitations of healthcare offers, digital interventions, for example medical apps, can provide a suitable approach to support affected people. In the envisaged prospective randomized controlled trial, we aim to examine the efficacy of the LightMood intervention. The LightMood intervention is a manualized and user-centered, digital intervention for patients with obesity, with a duration of 4 months, which contains elements of cognitive behavioral therapy and mindfulness-based and skills-based exercises. We expect the LightMood intervention to be superior to treatment as usual (TAU) in terms of reducing depression symptoms.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>The trial incorporates four distinct measurement time points: the baseline assessment, the post-treatment assessment, and 1- and 3-month follow-up assessments. Furthermore, we implemented in-treatment assessments for both groups. Participants will be randomized into two groups (LightMood intervention vs TAU). The aim is to include 128 participants (64 per group) in the study. Inclusion criteria are patients who are obese, at least 18 years old, with a private Internet access, and with adequate digital literacy and show depression symptoms (PHQ ≥ 10). Exclusion criteria are weekly outpatient individual psychotherapy, obesity surgery within the last year or planned within the next 7 months, no private Internet access, and the prescription of a new psychotropic drug within the last 2 weeks. The primary outcome is the post-assessment reduction in depression symptoms. Secondary outcomes will include the improvement in self-efficacy, quality of life, mindfulness, reduction in eating disorder symptoms, and body mass index (BMI). Furthermore, we expect a positive development of depression symptoms throughout the different time points (T1, T2, and T3) in patients with obesity.</jats:p> </jats:sec><jats:sec> <jats:title>Discussion</jats:title> <jats:p>LightMood is an evidence-based, efficient, low-threshold online intervention that aims to reduce depression symptoms in people with obesity. Online interventions could offer a promising alternative to conventional face-to-face therapy. The primary objective of the current study is to add essential insight into the feasibility, efficacy, effectiveness, and acceptance of e-mental health interventions for people with obesity and depression symptoms.</jats:p> </jats:sec><jats:sec> <jats:title>Trial registration</jats:title> <jats:p>German Clinical Trial Register (DRKS), DRKS00029219. Registered on May 19, 2023</jats:p> </jats:sec>
1000 Sacherschließung
lokal Obesity
lokal Adolescent [MeSH]
lokal Randomized controlled trial
lokal Study Protocol
lokal Humans [MeSH]
lokal Prospective Studies [MeSH]
lokal Mental Health [MeSH]
lokal Treatment Outcome [MeSH]
lokal Mindfulness/methods [MeSH]
lokal Depression/prevention
lokal CBT
lokal eHealth
lokal Obesity/complications [MeSH]
lokal Obesity/therapy [MeSH]
lokal Obesity/diagnosis [MeSH]
lokal Depression
lokal Mindfulness
lokal Online-intervention
lokal Depression/diagnosis [MeSH]
lokal Quality of Life [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S29jb2wsIERpbGFyYQ==|https://frl.publisso.de/adhoc/uri/R2VpZ2VyLCBTaGVpbGE=|https://frl.publisso.de/adhoc/uri/U2Nod2VkYSwgQWRhbQ==|https://frl.publisso.de/adhoc/uri/QmVja29yZCwgSmls|https://frl.publisso.de/adhoc/uri/U2NoYWRlbmRvcmYsIFRoZXJlc2E=|https://frl.publisso.de/adhoc/uri/SmFuc2VuLCBDaHJpc3RvcGg=|https://frl.publisso.de/adhoc/uri/Um9iaXR6c2NoLCBBbml0YQ==|https://frl.publisso.de/adhoc/uri/U2tvZGEsIEV2YS1NYXJpYQ==|https://frl.publisso.de/adhoc/uri/VGV1ZmVsLCBNYXJ0aW4=|https://frl.publisso.de/adhoc/uri/QsOkdWVybGUsIEFsZXhhbmRlcg==
1000 Hinweis
  • DeepGreen-ID: d369a948246b406d848e391c0044a05c ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universitätsklinikum Essen |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Essen |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6524402.rdf
1000 Erstellt am 2025-07-07T04:09:28.941+0200
1000 Erstellt von 322
1000 beschreibt frl:6524402
1000 Zuletzt bearbeitet 2025-07-29T16:30:35.821+0200
1000 Objekt bearb. Tue Jul 29 16:30:35 CEST 2025
1000 Vgl. frl:6524402
1000 Oai Id
  1. oai:frl.publisso.de:frl:6524402 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source