Download
44167_2024_Article_45.pdf 3,61MB
WeightNameValue
1000 Titel
  • Machine learning in physical activity, sedentary, and sleep behavior research
1000 Autor/in
  1. Farrahi, Vahid |
  2. Rostami, Mehrdad |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-01-30
1000 Erschienen in
1000 Quellenangabe
  • 3(1):5
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s44167-024-00045-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960357/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>The nature of human movement and non-movement behaviors is complex and multifaceted, making their study complicated and challenging. Thanks to the availability of wearable activity monitors, we can now monitor the full spectrum of physical activity, sedentary, and sleep behaviors better than ever before—whether the subjects are elite athletes, children, adults, or individuals with pre-existing medical conditions. The increasing volume of generated data, combined with the inherent complexities of human movement and non-movement behaviors, necessitates the development of new data analysis methods for the research of physical activity, sedentary, and sleep behaviors. The characteristics of machine learning (ML) methods, including their ability to deal with complicated data, make them suitable for such analysis and thus can be an alternative tool to deal with data of this nature. ML can potentially be an excellent tool for solving many traditional problems related to the research of physical activity, sedentary, and sleep behaviors such as activity recognition, posture detection, profile analysis, and correlates research. However, despite this potential, ML has not yet been widely utilized for analyzing and studying these behaviors. In this review, we aim to introduce experts in physical activity, sedentary behavior, and sleep research—individuals who may possess limited familiarity with ML—to the potential applications of these techniques for analyzing their data. We begin by explaining the underlying principles of the ML modeling pipeline, highlighting the challenges and issues that need to be considered when applying ML. We then present the types of ML: supervised and unsupervised learning, and introduce a few ML algorithms frequently used in supervised and unsupervised learning. Finally, we highlight three research areas where ML methodologies have already been used in physical activity, sedentary behavior, and sleep behavior research, emphasizing their successes and challenges. This paper serves as a resource for ML in physical activity, sedentary, and sleep behavior research, offering guidance and resources to facilitate its utilization.</jats:p>
1000 Sacherschließung
lokal Machine learning modelling
lokal Unsupervised learning
lokal Classification
lokal Supervised learning
lokal Predictive modelling
lokal Review
lokal Wearables
lokal Clustering
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RmFycmFoaSwgVmFoaWQ=|https://frl.publisso.de/adhoc/uri/Um9zdGFtaSwgTWVocmRhZA==
1000 Hinweis
  • DeepGreen-ID: 2d56cd1b8b04492495868d9e11779e70 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6524422.rdf
1000 Erstellt am 2025-07-07T04:16:02.527+0200
1000 Erstellt von 322
1000 beschreibt frl:6524422
1000 Zuletzt bearbeitet 2025-07-14T13:59:21.569+0200
1000 Objekt bearb. Mon Jul 14 13:59:21 CEST 2025
1000 Vgl. frl:6524422
1000 Oai Id
  1. oai:frl.publisso.de:frl:6524422 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source